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FOREWORD

This report was prepared between June 1988 and September 1988 by Eagle Engineering, Inc. for

the Advanced Programs Office of Johnson Space Center, a field center of the National Aeronau-

tics and Space Administration. The objective is to provide a program which can be used to

analyze the performance of a spacecraft making a low-thrust flight between the Earth and the
Moon.

Dr. J.W. Alred was the NASA technical monitor for the Advanced Space Transportation Study

contract of which this task was a part. Mr. Andy Petro was the NASA task monitor for this

particular task. Mr. W.R. Stump was the Eagle project manager. Mr. C.C. Vamer was the Eagle

task manager for this task. This program was originally written and documented in BASIC by

Mr. D.J. Korsmeyer of the Large Scale Programs Institute at the University of Texas. The

conversion to FORTRAN was completed by Mr. M. D'Onofrio of Eagle, and FORTRAN
documentation was prepared by Mr. C.C Vamer.
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1.0 USING CISLUNAR

CISLUNAR is a stand alone program designed to generate the trajectory of a low-thrust space-

craft travelling in Earth-Moon space. The program allows the creation of functional trajectories

dependent upon the supplied spacecraft characteristics. The trajectory generation is a user

interactive process. The original intent was for the program user to modify the necessary control

values until a satisfactory trajectory has been created.

The program is started by simply typing CISLUNAR. The information that appears on the screen

indicates that CISLUNAR has started, and shows the spacecraft's default characteristics. These

characteristics can be modified by the user at the beginning of each run. The program prompts

the user for the direction of the trajectory generation by asking whether the initial orbit is about

the Earth or the Moon. This sets the direction flags for the rest of the program. The next

question is whether new parametric velocity curves based on the spacecraft's characteristics

should be created. If this question is answered "yes", the program generates these curves before

continuing. The next three questions concern the initial altitude, velocity, and orbital position of

the spacecraft. The altitude must be input for the program to continue. The velocity will default

to the circular velocity at the input altitude. The final question asks if the controls for the

spacecraft generation need to be modified. If this question is not answered or the answer is "no",

the program uses the default values for the controls.

Four controls are specified, Jacl, Jac2, Jac3, and Range. These four values govem the thrusting

of the spacecraft during the final escape and translunar portions of the trajectory. Jac 1 indicates



the spacecraft is nearing the end of its spiral escape from the initial orbit; the engines shut down,

and thrusting ceases unless the spacecraft is in the proper quadrant for transfer injection. Jac2 is

the control that determines whether the spacecraft can achieve a cislunar trajectory. Ideally the

Jacobian Constant at Jac2 has a value of 3+.2 <km/s>. After reaching Jac2, the spacecraft

thrusts continuously. Jac3 is the final constraint on the amount of energy that is to be supplied to

the spacecraft during transfer. Following Jac3, the spacecraft does not thrust. Range is the

control that determines the distance from the initial planet that the capture guidance to the target

planet is begun. This is the point at which reverse thrusting begins.

Markers for these four controls show up on the trajectory as each of them is passed. For Jac 1-

Jac3, a small circle will indicate that this control has been reached. The passage of Range is

indicated by a small vertical line. The visual representation of the controls is helpful to under-

stand and plan a modification of the controls. The markers do not appear in FORTRAN versions

of the program.

While the trajectory is being generated the program can be paused, restarted, or simply stopped

at any time.
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2.0 PROGRAM CONSIDERATIONS

The trajectory determination methods for impulsive and low-thrust spacecraft differ consider-

ably. Electric propulsion systems need to thrust continuously for long periods of time in order to

achieve a significant velocity change.

instantaneous change in the velocity.

Chemical, or impulsive propulsion, can create a near

Where an impulsive thrusting spacecraft could use two

short powerful thrusts to transfer between LEO (Low Earth Orbit) and a higher orbit, a low-

thrust orbital transfer starting in LEO would be accomplished as a very slow outward spiral to

the desired altitude. The fractional increase of the orbital radius per revolution is very small for

low-thrust spacecraft. This complicates the calculation of trajectories for low-thrust vehicles.

The characteristics of the low-thrust spacecraft will also play an important role in determining

the type of trajectory that can be developed. The vehicle's propulsion system and associated

power system will have a considerable impact on the type of trajectories available.

The power and propulsion system for a low-thrust spacecraft are intimately coupled. The

thruster system efficiency is the fraction of electrical power that is converted to exhaust kinetic

energy. This yields,
m (I,,,g) 2

13 =
2 Po

{2.1}

where r I is the thruster system efficiency, m is the mass flow rate of the thrusters, and P. is the

electrical power input to the propulsion system. 1



Currently, there are many different low-thrust electric propulsion systems under investigation.

The ion engine, magnetoplasmadynamic thruster, and arcjet are a few of the leading candidates.

All of these engines will require continuous high power to be able to perform competitively

against chemical propulsion. Nuclear and solar power systems are the major competitors for

high power supplies in space. Solar arrays and solar dynamic power systems have the advantage

of using the sun as a heat source, however, they require continual sunlight. For some propulsion

systems solar power cannot provide the needed level of power. Nuclear power, on the other

hand, has tremendous potential for fulf'dling the power needs of electric propulsion systems.

The proposed range of power available from nuclear sources ranges from a few kilowatts to

megawatts. 2

This program does not include an aerocapture option. Aerocapture has numerous problems for

large nuclear or solar power sources. The general outbound trajectory assumed is a spiral out

from LEO and a spiral down into LLO (Low Lunar Orbit). The return trajectory is a spiral up

from LLO and then down into LEO.

The guidance scheme employed to determine a trajectory must use only low-thrust to capture the

OTV into LEO. The low-thrust OTV is limited in the range of thrusting acceleration available to

drive the vehicle to the desired orbit. Another restriction for the trajectories of nuclear-powered

OTVs is the proposed nuclear safe orbit (NSO). 3 This would be a designated altitude below

which the nuclear powered spacecraft would be prohibited. The spacecraft would be prohibited

from descending below this altitude at any point of the trajectory.
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In the development of trajectories for low-thrust cislunar OTVs, little attention has been directed

at the guidance and control of the spacecraft. The premise that the guidance of the vehicle and

the determination of the appropriate trajectory are unrelated is false. Rather guidance and

trajectory determination for low thrust vehicles are closely related problems which, by necessity,

must be treated with equal importance. 4

lo

2.

.

°

Hill, P.G., and Peterson, C.R., p. 336.

English, Robert E., "Power Generation from Nuclear Reactors in Aerospace Applica-

tions, "NRC Symposium on Advanced Compact Reactors, Washington, D.C., November

15-17, 1982.

Galecki, Diane L., and Patterson, Michael J., "Nuclear Powered Mars Cargo Transport

Mission Ut/liT.ing Ion Propulsion," AIAA/SAE/ASME/ASEE 23rd Joint Propulsion

Conference, San Diego, CA, 1987, A/AA-87-1903.

Battin, R.H., and Miller, J.S., "Trajectories and Guidance Theory for a Continuous Low-

Thrust Lunar Reconnaissance Vehicle," 6th Symposium on Ballistic Missile and

Aerospace Technology, 1961.
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3.0 PROBLEM FORMULATION

A major problem in the design of low-thrust OTVs and their associated trajectories is the lack of

an end to end simulation tool for the spacecraft trajectory, from NSO traveLling to LLO and the

subsequent retum. The current concern is how the vehicle will behave at the proposed thrust

level and how it will be guided on its trajectory.

To adequately understand the dynamics of motion of the low-thrust spacecraft, the gravitational

effects of the Earth and the Moon on the spacecraft must be included for the full duration of the

trajectory. The thrusting acceleration for low-thrust OTVs in high Earth orbit is the same

magnitude as the perturbing force due to the Moon. To model the Earth-Moon system with the

necessary accuracy and achieve computational efficiency, the restricted three-body formulation

of the dynamical equations is utilized as the governing equations of motion.

3.1 RESTRICTED THREE-BODY FORMULATION

The problem of three bodies was first formulated in 1772 by Lagrange. Further studies by

Poincare, Laplace, Hill and Szebehely have resulted in a detailed treatment of the problem and a

general understanding of the interactions between the two primary gravitational fields. Various

formulations are available to represent the problem of three bodies. The formulation used in this

study was referenced from Kaplan 1 and Moulton. 2
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Many realistic orbital cases may be modelled as restricted three-body situations. An exemplary

case is that of a spacecraft moving in the Earth-Moon system. Certain assumptions are made

about the nature of the Earth-Moon system that permit a straightforward solution at a slight loss

of accuracy. The motion of the Earth-Moon system is assumed to be circular and coplanar about

its center of mass (barycenter) and the spacecraft, at point P, has negligible mass. This system is

shown in Figure 3.1. The motion of the spacecraft is governed by the relative gravitational

attraction of the Earth and the Moon rotating about the barycenter. The spacecraft is assumed to

have no impact on the motion of the Earth or the Moon. Thus, the acceleration at P is

[ ]r. + --- rm = V _" +
ap = r r_ -r_ -r_

{3.1}

The absolute acceleration of the spacecraft is obtained in terms of the rotating coordinate system,

x,y,z, by relating the acceleration of the spacecraft in the non-inertial (barycenter) rotating

system to that in the inertial coordinate system. Hence,

ap = ao + n x (n x r) + rb + 2n x rb

where,

{3.2}

r is the radius vector of the spacecraft,

r_ is the apparent velocity of the spacecraft in the rotating coordinates,

rb is the apparent acceleration of the spacecraft in the rotating coordinates,

a_ is the acceleration of the spacecraft in inertial coordinates,
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ao is the acceleration of the origin in the inertial coordinates,

n is the angular velocity vector of the Earth-Moon system, n = ni,,

n x (n x r) is the centrifugal acceleration, and

2 n x rb is the Coriolis acceleration due to the motion of the spacecraft in x,y,z.

Equating {3.1} and {3.2}, noting that the acceleration of the origin is the same for both equa-

tions, and expressing the acceleration in component form, yields the equations of motion for the
spacecraft in the rotating coordinate system.

x" - 2n_t - n2x =

x- r° r_

[ ]
y + 2nx - n2y = %y- ro r_

{3.4}

3.2 JACOBIAN CONSTANT

In this formulation of the equations of motion, the energy of the spacecraft is not conserved.

However, the sum of the angular momentum, velocity, and potential energy of the spacecraft is

conserved. This can be shown with the/acobian Integral. Multiplying the first equation of

{3.4} by dx/dt, the second by dy/dt,

x 2 + y2 _ n 2 (x2 + y2)

adding, and integrating the result yields this integral.

= ro + rm - C

{3.5}

where C is known as the Jacobian constant. Mathematician Karl Gustav Jacobi first formulated

this integral in 1836. This constant, C, can be determined for any set of initial conditions.

Equation 3.5 determines the locus of those points where the spacecraft can travel given the initial

conditions. In particular, if the velocity of the vehicle is set equal to zero for a given C, equation

9



3.5will describea curvewherethe spacecraft'smotion is bounded. On this curve the spacecraft

with a given C will have zero velocity. Only on the inside of the curve will the square of the

spacecraft's velocity be positive, restricting the motion of the vehicle to that side. Figure 3.2

shows a series of zero velocity curves in the Earth-Moon system.

.

2.

Kaplan, Marshall H., Page 290-300.

Mouhon, Forest Ray, An Introduction to Celestial Mechanics. (Dover Publications, Inc.,

New York: 1914, 2nd Revised Edition) pages 277-287.
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Figme 3.2 Zero Velocity Curves in the F..atth-MoonSystem

(Kaplan, Page 292)
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4.0 GUIDANCE METHODOLOGY

The trajectory determination and guidance of a cislunar low-thrust OTV is divided into three

distant phases: departure, translunar targeting, and capture. Each of these phases has a different

guidance scheme to achieve the overall goal of generating a trajectory between the Earth and the

Moon.

4.1 DEPARTURE

The ftrst phase in any cislunar journey for an OTV is the escape from the initial parking orbit,

whether about the Earth or the Moon.

of continuous thrusting is necessary.

For low-thrust spacecraft to achieve escape, a long period

This results in a slowly increasing spiral trajectory from

the initial orbit. The direction of the thrust vector should be in the direction that has the highest

rate of increase of the energy of the orbit per revolution. It can be shown that a near-optimal

thrust for an orbital transfer should be directed along the velocity vector of the spacecraft for the

majority of the trajectory, t2 This is referred to as tangential thrust, because the thrusting

acceleration will be tangent to the trajectory at all times. Another thrusting scheme, circum-

ferential thrust, directs the acceleration along a vector perpendicular to the central body.

Tangential thrust is the thrusting approach used in the spiral escape from the departure planet.
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4.2 TRANSLUNAR TARGETING

The value of the Jacobian constant of a spacecraft will be used as an indicator of the sufficient

energy for the cislunar transfer. Dr. Victor Szebehely 3 notes that an equipotential curve like that

shown in Figure 4.1 occurs when the Jacobian constant is approximately 3.3. When the space-

craft is outside of this curve, the range of motion is no longer restricted only to geocentric or

lunar orbit, but can include transfer between the neighborhood of the Earth or Moon.

The spacecraft needs to achieve the required Jacobian constant when the velocity vector of the

spacecraft is pointed in the appropriate direction to allow transfer between the Earth and the

Moon. Figure 4.2 shows this targeting procedure for the OTV. The area about the Earth is

divided into four quadrants, I-IV. The Jacobian of the spacecraft is calculated continuously as

the spacecraft nears escape. Various values of the Jacobian are chosen experimentally to act as

indicators of the spacecraft's proximity to escape. The initial indicator of escape is the value of

the Jacobian while the spacecraft is in the third quadrant. If the vehicle achieves a Jacobian of

4.1 while located in the third quadrant, continued thrust will enable a lunar passage to occur.

However, if the spacecraft achieves the value of the initial Jacobian, 4.1, while outside the third

quadrant, the spacecraft's thrust is turned off. When the spacecraft arrives in the third quadrant

the thrust is reinitiated tangentially to obtain the necessary Jacobian for escape and remains on

until the spacecraft achieves sufficient energy for transfer and enters the capture phase. On the

return trip back from the Moon, the same methodology is used with different Jacobian constants.

The Jacobian constants used in the Earth to Moon voyage are driven only by the acceleration

level of the spacecraft during escape.
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4.3 CAPTURE

As the vehicle approaches the Moon the capture guidance phase of the trajectory is initiated. In

the absence of impulsive thrust, the approach and capture to the target body are critical and must

not necessitate maneuvering beyond the limited capabilities of the propulsion system. The

problem of low-thrust spacecraft guidance and trajectory determination between the Earth and

the Moon was addressed in a study by Richard H. Battin and James S. Miller in the late 1950's

and early 1960's. The concept for the spacecraft guidance during capture used in this study is

derived from Battin and Miller's work. _

The guidance scheme is relatively simple and straightforward. The operation of the capture

phase guidance is illustrated in Figure 4.3. The velocity of the spacecraft, V,, relative to the

target body (i.e. the Earth or the Moon) is compared with a precalculated velocity, V c, profile for

a spiral capture. This velocity prof'de is a function of the radial distance from the target body

and the magnitude of the thrust acceleration. This velocity difference, Vd, is used in combination

with the nominal acceleration to determine the direction and magnitude of the spacecraft thrust

during capture.

In order to calculate the velocity as a function of the radial distance from the capturing body, the

"ideal", or reference trajectory must be calculated. This is a spiral capture that achieves circular

velocity at the desired final altitude. To determine this reference spiral path and the velocity

vectors that accompany it, the spacecraft starts in a circular orbit at the desired final altitude

about the target body. The mass of the spacecraft at the final altitude is determined by

14
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estimating the final mass of the spacecraft at the completion of the mission to be 80% of the

initial mass. The spacecraft follows a spiral out from the target planet using tangentially directed

thrust and a negative mass flow. Only the gravitational field of the target planet is considered.

The spiral trajectory is otherwise without perturbations and consequently remains two-dimen-

sional. The calculation of the trajectory continues until the energy of the orbit is non-negative,

and the vehicle is on a parabolic path. The associated radial and tangential components of the

spacecraft's velocity are recorded at select steps as functions of the radial distance from the

central body. The velocity functions are obtained by fitting the recorded velocity components to

polynomial and power curves. Figures 4.4 and 4.5 are example graphs of the velocity profiles

for tangential and radial velocity at a radial distance. The equations shown in the figures have

parameterized the velocities as a function of the radial distance. This data was obtained by the

described reverse integration process.

An explanation of the thrust guidance control used by the spacecraft during capture phase of the

trajectory is presented as follows. The actual velocity of the spacecraft, V,, at a given radial

distance, r, is compared with the parameterized reference capture velocity, Vo, at r. The

difference between these velocity vectors is then determined as Vd, where

V_=Vv -Vo
{4.1}

The instantaneous change in the capture velocity can be approximated as the effect of the

acceleration of the spacecraft due to its thrust and the gravitational pull of the planet acting over

a small time increment, At. This implies

V_ = (a_ + g)At

{4.2}
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where a_ is the nominal acceleration of the spacecraft, and g is the gravitational acceleration

vector of the capture planet. The instantaneous change in the actual velocity of the spacecraft

can also be approximated as such

Vv = (at + g)At

{4.3}

where a, is the acceleration vector of the spacecraft on the trajectory. Combining equations 4.1,

4.2, and 4.3 and rearranging to find at, equation 4.4 is obtained.

Avo

a t = a e -

At

{4.4}

The thrust acceleration is then chosen so that the rate of change of the velocity vector Vd is

proportional to Vd itself. This results in

AVd AVd

At T_

where T_ is an empiricallydetermined time constant. With thisformula the appropriatethrust

acceleration can be determined in both magnitude and direction simply with the knowledge of

the vehicle's position, velocity, and nominal thrust acceleration a_.

In the application of the guidance it is reasonable to assume that the direction of the thrust

acceleration can be varied at will, but the magnitude of the thrust is limited by the capabilities of

the propulsion system. The spacecraft thrust is never required to deliver greater than the

nominal thrust. The possibility of a reduction in the thrusting acceleration is not precluded as a

desirable effect of the thrusting algorithm. Figure 4.6 is a graphical representation of the

21



accelerationvectors a, and ac. The radii of the circles are detemained by the nominal acceleration

of the spacecraft.

Then,

at < a_ + T_

When the magnitude of the thrust acceleration, %, is less than the nominal capabilities of the

engine, a less than nominal thrust is needed in the appropriate direction.

This thrusting algorithm drives the spacecraft's velocity components toward the reference

velocity conditions. The actual reference conditions can never be reached due to the fact that

they were generated in an ideal two-body environment with estimated final conditions, and most

importantly, the magnitude of the spacecraft's thrust is limited. This results in a generated spiral

capture trajectory that is not "ideal" but is adequate.

.

2.

3.

4.

Keaton, Paul W., page 4

Hill, P.G., and Peterson, C.R., Chapter 10.

Szebehely, Victor, Personal Communication, November, 1987.

Battin, R.H., and Miller, J.S.
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5.0 PROGRAM INPUTS

Cislunar needs some preliminary data before it can operate. This data is provided by the user

interactively during program execution. A series of screen prompts will direct the user to supply

vital information. The user will input the requested data; and the program will proceed to the

next question. In this section the screen prompts are discussed as well as the information that the

program expects the user to supply.

. Prompt:

Description:

DO YOU WISH TO SUPPLY S/C CHARACTERISTICS (Y OR N)

Type "Y" if the default values axe to be changed. After hitting RETURN the

program will request further information about the spacecraft characteristics.

Typing "N" at tiffs prompt instructs the program to use default spacecraft

characteristics.

1A. Prompt:

Description:

SPACECRAFT INITIAL MASS =

Enter the spacecraft mass before it leaves the holding orbit about the planet of

origin. The mass is in kilograms. The default value is 60,000 kg.

lB. Prompt:

Description:

SPECIFIC IMPULSE OF ENGINE =

Enter the engine specific impulse in seconds. Default value is 2500s.

24



IC. Prompt:

Description:

MASS FLOW RATE OF ENGINES =

Input the propellant mass flow rate. The units are in kilograms per second,

and the default value is 0.0082 kg/s.

1D. Prompt:

Description:

DEGREE OF POLYNOMIAL CURVE FIT (2-7)

When requested the program creates a velocity guidance spiral about the

target planet. This guidance spiral is used by the control system to provide

capture targeting. After creating the data for this guidance spiral, the program

forms a curve which approximately "fits" the data. This curve is described

with a polynomial mathematical expression. The expression can be between

2nd through 7th order; and the order must be supplied by the user. Note:

Higher order curves take longer to create than lower order curves. 3rd order

is usually sufficient.

. Prompt: STARTING ORBIT ABOUT THE EARTH OR THE MOON? (E OR M)

Description: Type the fast letter of the planetary body from which the spacecraft origi-

nates.

. Prompt:

Description:

DO YOU WANT TO GENERATE PARAMETRIC VELOCITY CURVES?

If the user types "Y" or "Yes" then the program creates the velocity guidance

spiral discussed in question 1D. In FORTRAN versions of the program, the

parametric velocity curves are automatically generated; this question is not

asked. In the BASIC version of CISLUNAR, the user is given the option due

25



° Prompt:

Description:

to the length of time required to generate these curves. The initial attempts at

cislunar targeting are not likely to come close enough to the target planet to

make capture guidance worthwhile. In such cases, the velocity guidance

spiral generation is not only unnecessary, but also time consuming. If the

parametric velocity curves are not desired, the user should type "N" or "No"

at this prompt.

INPUT THE RADIUS FROM THE PLANET'S CENTER

Enter the radial distance of the spacecraft from the center of the planet of

origin. This distance has units of kilometers.

. Prompt: INPUT ANGLE (DEG.) FROM - X AXIS

Description: The X axis is the line between the Earth and the Moon. The -X axis is the

Earth-Moon line on the "Moon" side of the Earth, or on the "Far" side of the

Moon. While the +X axis is the Earth-Moon line on the "Far" side of the

Earth, or the "Earth" side of the Moon. The program requests that the user

supply the angle, measured counter-clockwise, from the -X axis. The angle is

in units of degrees.

, Prompt:

Description:

DO YOU WISH TO SPECIFY THE VELOCITY? (Y OR N)

Enter "N" to tell the program to default to circular orbit speed, otherwise enter

"y".

26



6A. Prompt:

Description:

INPUT ABSOLLrI'E VELOCITY

Enter spacecraft velocity in kilometers per second.

7. Prompt:

Description:

MODIFY CONTROL JACOBIANS AND RANGE?

The Jacobian Constant is the controlling parameter for cislunar targeting. The

RANGE parameter is used to initiate capture guidance and thrust control. The

user should type "N" at this prompt if the default values are suitable.

Otherwise, enter "Y" and proceed to modify the control Jacobians and the

RANGE.

7A. Prompt:

Description:

JAC 1 = 4.93

Input the new value for the first Jacobian control point. The Jacobian

constant is a non-dimensional number, which can be represented by zero-

velocity carves as shown in Figure 4.1. After passing the fast control point

the spacecraft will thrust only while in control quadrant.

7B. Prompt:

Description:

JAC 2 = 4.10

Enter the new value for the second Jacobian control point. The passage of the

second control point means that the thrusting will revert back to continuous

mode.
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7C. Prompt:

Description:

/AC 3 = 2.70

Enter the new value for the third Jacobian control point. The engines shut

down entirely after reaching the third control point. Thrust is zero and the

spacecraft coasts.

7D. Prompt:

Description:

RANGE = 255000

Input the new RANGE in kilometers. The RANGE is the distance from the

planet of origin at which capture guidance is to begin.

28



6.0 TEST CASE

An example of a set of inputs for cislunar flight from the Earth which works well is the

following:

Prompt: DO YOU WISH TO SUPPLY S/C CHARACTERISTICS? (Y OR N)

Answer: "N"

Prompt: STARTING ORBIT ABOUT THE EARTH OR MOON? (E OR M)

Answer: "E"

Prompt:

Answer:

Prompt:

Answer:

Prompt:

Answer:

DO YOU WANT TO GENERATE PARAMETRIC VELOCITY CURVES?

twyt!

INPUT THE RADIUS FROM THE PLANET'S CENTER

19000

INPUT ANGLE (DEG) FROM -X AXIS

-76
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Prompt:

Answer:

DO YOU WISH TO SPECIFY THE VELOCITY? (Y OR N)

"N"

Prompt:

Answer:

MODIFY CONTROL JACOBIANS AND RANGE?

,,y,,

Prompt: JAC 1 = 4.93

Answer: 4.93

Prompt: JAC 2 = 4.10

Answer: 4.10

Prompt: JAC 3 = 2.70

Answer: 2.55

Prompt: RANGE = 255000

Answer: 255000

The graphical results axe shown in Figures 6.1 and 6.2. The nan data is stored in a file called

CISLUNAR.OUT. This file is not created in BASIC versions since the data is to be presented

with the graphics direcdy on the screen.

The total velocity changes that a vehicle must undergo to perform this mission axe derived from

Tsiolkovsky's equation (6.1).
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Figure 6.1 - CISLUNAR Output: BASIC Version

F_th to MoonTz,_ecto_
[nit, Mass= 688GG,88kgPz_op,Mass= 18388,831kgDist, Eu,th = 3?9944,98kn
rim el_ed : 404,68Ju,s Oel:1,1856bv's Dist, Moon: 5851,96

Jacobian: 2,531670175551726

,, ..... ..o

't

•
' ':)'_" I _[_'" ' ', :., • .::::
',. ",!_ *

,Q , , , , . . * , •

°

°

,0'

P=Pause G=Go B=Resta_t q=quit

I

Figure 6.2 - CISLUNAR Output: FORTRAN Version

Eorth to Moon

4.00(_

Trojectory

3.0000

2.0000

,OCIO0

0.0000

-- 1.0000

--2.0000

--3.0000

-3,0000"--2.0000'-- _ 0000"0.0000 '1.0000 '2.0000 3,0000 4 0000 '50o00

Oimtonce with respect to bQrycentmr .1 06
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AV = g * I,p * LN

_V = Total Velocity Change <km/s>

g = Surface gravity of the Earth (9.81

I,p = Spacecraft's Specific Impulse <s>

M o = Spacecraft's Initial Mass <kg>

M = Spacecraft's Final Mass <kg>

_V = 4.619 <km/s>

{6.1}

x 10-3km/s)

In order to check the validity of this program, let us compare these results with those that we

would receive from other methods of delta-V determination. One method of approximating the

total delta-V required for very-low thrust orbital transfers is described in the following para-

graph, and will hereafter be called the Approximation of Low-Thrust Velocity Change.

The hypothesis behind the Approximation of Low-Thrust Velocity Change is that the low-thrust

delta-V required to transfer between two orbits of a central force body is approximately equal to

the difference in their mean orbital speeds. For circular orbits, this is the difference between the

circular orbit speeds of the two orbits between which the vehicle is to transfer (Equation 6.2).

AVLow rhru,t = Absolute Value of (V_ - V_)

where: V,, = Mean Orbital Velocity of Orbit #1

V=2 = Mean Orbital Velocity of Orbit #2

{6.2}

In the test case shown, the spacecraft makes a low-thrust transfer about the Earth between the

orbits of 19,000 km circular and the Moon's Orbit of 384,400 km circular. It then makes a low-

thrust transfer about the Moon from Escape orbit (V m = 0) to 5,000 km circular. The low-thrust
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delta-V for these transfersare calculated using Equation 6.2 to be 3.570 <km/s> and 0.990

<km/s> for the Earth and Moon transfers respectively. Therefore, using the Approximation of

Low-Thrust Velocity Change, the total low-thrust delta-V is approximately 4.560 <km/s>. This

compares well with the 4.619 <km/s> delta-V, obtained using the mass ratio, and Tsiolkovsky's

equation.
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7.0 PROGRAM CODING

The discussion of the program coding is sectioned by subroutine. The subroutines are addressed

in alphabetical order following the discussion of the main "driver" routine. Each subroutine has

a description, a list of variables, followed by the actual program code. There are two sets of

code. The first set is the code for the BASIC Version of the CISLUNAR; the second set is the

FORTRAN Version.
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Subroutine Description

And Variable Dictionary

MAIN PROGRAM DESCRIPTION

The main program controls the flow of the entire program. Initially it sets the global constants

and the global variables. It calls the IO subroutine which then returns the information necessary

to begin the trajectory generation. An integration loop is run to generate the trajectory. While in

the loop, the program determines where along the trajectory the spacecraft is and adjusts the

integration step size for accuracy and convenience. During the translunar portion of the trajecto-

ry the instantaneous Jacobian constant is calculated based on the spacecraft's position and

velocity by calling JACOBI. The ma2n program compares this Jacobian value with the chosen

control variables and marks an indicator along the trajectory when the controls are reached. The

spacecraft's mass is decremented according to the integration step size and the mass flow rate,

and a new acceleration level for the next pass through the integration loop is calculated. The

fourth order Runge-Kutta routine is called to integrate the position and velocity of the spacecraft.

The position, velocity, mass, and elapsed time of flight output is updated every fifth integration.

In the BASIC Version, each update is sent to the screen. In the FORTRAN Version, each update

is stored in two arrays called GRAFX and GRAFY. These arrays axe plotted at the end of the

simulation. At the end of each integration loop the main program checks to see if there has been

input from the keyboard to pause, continue, restart, or quit.
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PROGRAM WIDE COMMON VARIABLES

ACCEL1

Isp

Mdot

MU

RANGE

SCMASS

SCMASSV

TH

THRUST

VRN

VTN

Acceleration of spacecraft during the spiral reference velocity parametrization

portion (km/s^2).

Specific Impulse of the propulsion system (seconds).

Mass flow rate of the propulsion system (kg/s).

Gravitational parameter of the destination planet (kmA3/s^2).

Range from departure planet that the capture phase is initiated (km).

Initial spacecraft mass (kg).

Instantaneous spacecraft mass, accounting for the propellant used (kg).

Numeric indicator of the spacecraft's thrust, on (1) or off (0).

Thrust of the propulsion system (kg*km/s^2).

Degree of the radial velocity polynomial curve fit.

Class of equation for tangential velocity parameterization, linear (1), exponential

(2), power (3), or logarithmic (4).

PROGRAM WIDE CONSTANTS

DE Distance

(km).

DM Distance

(km).

EMDIST

gravity

MUE

MUM

MUN

of the Earth's center from the Barycenter of the Earth-Moon system

of the Moon's center from the Barycenter of the Earth-Moon system

Distance between the center of the Earth and the center of the Moon (km).

Earth's surface gravity (km/s^2).

Gravitational parameter of the Earth (km^3/s^2).

Gravitational parameter of the Moon (km^3/s^2).

Ratio of the Moon's mass to the mass of the Earth-Moon system
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NUM

NW

NW2

PI

Orderof theX state vector for the Runge-Kutta.

Mean motion of the Earth-Moon system (rad/s).

Mean motion squared (rad/s)A2.

/g

ADDITIONAL MAIN PROGRAM VARIABLES

ACCEL

ALPHA

CJ

counter

DIRECTION

dt

RANGEOFF

RJAC0

RMT

RR

tests

theta

thrst

TIC

"IT

Acceleration of the spacecraft during the cislunar trajectory (krn/s^2).

Theta + PI/2, angle of the tangential velocity vector.

Instantaneous Jacobian constant of the spacecraft.

Counter for determining when to update the screen display of the trajectory.

Numeric indicator of the direction of the trajectory generation, Earth to Moon (0)

or Moon to Earth (1).

Integration step size (seconds).

Flag for GUIDE subprogram indicating if the spacecraft has entered the capture

phase of the trajectory generation.

The array of the Jacobian constants used as controls for the departure portion of

the trajectory generation.

Radial distance of the spacecraft from the center of the Moon (km).

Radial distance of the spacecraft from the center of the Earth (km).

String variable for controlling program from the keyboard.

Angle between the radial vector to the spacecraft from the controlling gravitation-

al body and the x-axis. Dependent upon xf.

Flag for the spacecraft during the spiral escape indicating the passage of the

second control Jacobian, (0) off (1) on.

Flag for graphically showing the position on the trajectory where the control

Jacobians and Range are reached.

Total time of trajectory generation (seconds).
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VR0

VT0

W

xo

xf

The array of parameterized radial velocity component coefficients.

The array of the parameterized tangential velocity component coefficients.

Magnitude of the spacecraft's velocity (km/s).

State Vector of the spacecraft's position and velocity in the rotating x,y coordi-
nates (km and km/s).

Distance along the x-axis the spacecraft is from the Earth or Moon. Dependent

upon the phase of the trajectory generation, departure or capture.
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Cislunar Program Flowchart

lower

No

I Initialize and set !Constants

-[ Call IO-L ]
p until

Pause, Restart

or Quit

To To

Moon

lower

3all JACOB!

No

Graph Control

Call RUK4 1

,, NO y

_ncrement Counter i

°'ea 
!

QUIT

UpdateD,_taScreenI

I

Counter !
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BASIC CODE
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DECLARE SUB IO (VR# () o VT# () ° X# (), DIRECTION#, RJAC# ())
DECLARE SUB DERI (X#(), DX#()}

DECLARE SUB RUK (X#(), N!, dr#)

DECLARE SUB SPIRAL (X# (), DIRECTION#, RANGESC#, VT# (), VR# ())
DECLARE FUNCTION ACOS# (X#)

DECLARE SUB POLYFIT (PR# (), PV# (), DEGREE#, N#, VR| ())
DECLARE SUB C_KV_ (X#(), Y#(), N#, VT#())

DECLARE SUB DBOX (urow%, uco1%, irow%, lcoi%)

DECLARE FUNCTION ATAN2# (X#, Y#)

DECLARE SUB SHOW (X# ())

DECLARE SUB JACOBI (X#(}, CJ#)

DECLARE SUB RUK4 (X# (}, N!, dr#)

DECLARE SUB DER (X# (), DX# ())

DECLARE SUB GUIDE (GDI#, GD2#, X# ())

I IN Jim l/ml_llg31 l

Main: "Main Program for Low-thrust Guidance; 3-body, eqns from Kaplan
Imimmmslmmm-- I i _ --__,mmmmam.mm m

DEFDBL A-H, K-Z

COMMON SHARED TH, SCMASSV, SCMASS, Isp, THRUST, Mdot, RANGE
COMMON SHARED ACCELI, MU, VTN, VRN
REM Constants

CONST MUE - 398600.5#

CONST MUM - 4902.794#

CONST DE - 4670.6778#

CONST DM - 379729.32#

CONST EMDIST - DE + DM

CONST NW - .000002665314572#

'mu of the earth

'mu of the moon

'distance of Earth from barycenter (km)

'distance of Moon from barycenter (km)

'distance between the earth and the moon

'mean motion (tad/s)
CONST NW2 - NW * NW 'mean motion squared

CONST gravity - 9.809999999999999D-03 'earth's surface gravity (km/s^2)
CONST PI - 3.141592654# "pi
CONST NUM - 4!

CONST MUN - MUM / (MUM + MUE)
SCMASS - 60000#

Isp - 2500#

Mdot - 8.200000000000001D-03
VRN - 7

DIM X(4), VR(0 TO 7), VT(2), RJAC(3)
AGAIN:

IO VR(), VT(), X(), UIRECTION, RJAC()
SCMASSV - SCMASS

'order of state vector for Runge-Kutta

'ratio of Moon's mass to system mass
'total s/c mass (kg)

'specific impulse (secs)

'mass flow rate (kg/s)

'degree of polynomial curve fit

'program position at a restart.

TT - 0#: counter - 5: thrst - 0: TIC - i: RANGEOFF - 0'initial time
DO

W - SQR(X(3) ^ 2 + X(4) ^ 2)

RR - SQR((X(1) + DE) ^ 2 + X(2) ^ 2)

RMT - SQR((X(1) - DM) ^ 2 + X(2) ^ 2)

IF X(1) < 210000 THEN 'earth portion
xf - X(1) + DE

dt - INT(.01# * RR) 'integration step size
IF RR < 7800 AND DIRECTION - I THEN dt - 5#

IF RR > 40000 AND DIRECTION - 0 THEN

JACOBI X(), CJ

LOCATE 5, 13: PRINT CJ
ELSE

CJ - 10

END IF

ELSE "lunar portion
xf - X(I} - DM

dt - INT(.02# * RMT) 'integration step size

IF RMT < 2200 AND DIRECTION - 0 THEN dt - 3#
IF RMT > 6000 AND DIRECTION - I THEN

JACOBI X(), CJ

LOCATE 5, 13: PRINT CJ
ELSE

CJ - 10

END IF
END IF
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" kg"

SELECT CASE TIC

CASE i: IF C_J < RJ_(TIC) TH_ CIRCI_ (X(1), X(2)), 2000: TIC- 2
C2&SE 2: IF CJ < RJAC(TIC) THEN CIP4:LE (X(1), X(2)}, 2000: %_C - 3
C_E 3: IF C_ < RJAC(TIC) TH_ CIRCLE (X(1), X(2)) 2000: TIC- 4
C_ FJ,SE: TIC - 4
END SELECT

theta - ATAN2 (xf, X (2)) 'angle of racilus vector

JLLPHA - _heta + PI / 2# 'angle of tangential vector
TT - TT + dt

SC_SV - SC_SV - Mdot _ dt * TH'True s/c _ss as propellant is used
ACCEL - THRUST / SC_SV 'acceleration of the s/c (km/s^2)
RUK4 X(), N_, dt
IF counter >- 5 THEN

ELSE

LOCATE 3, 17: PR/NT USING "####.##-; TT / 3600#; : PRINT " hrs-
IX)CATE 3, 35: PRINT USING "#.####-; %"4; : PRINT " km/s"
IX_.ATE 3, 67: PR/_ USING "######.##-; RMT; : PR_VNT " km"
LOCATE 2, 67: PRINT USING "######.##-; RR; : PRI_ " km"

L_TE 2, 40: PR_TNT USING "#####.###-; S_S - SC/4ASSV; : PRI:

counter - 0
SHOW X()

counter - counter + 1
END IF

testS - UCA_E$ (IN_qEY$)
IF tests - "P" THEN

DO

Testl$- UC_E$ (INY_EY$)
LOOP UNTIL Testl$- "G"

END IF

IF tests - "R" THEN GOTO AGAIN

LOOP UNTIL tests - "Q"
CLS
END
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FORTRAN CODE
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1 C

2
3

Main Program for Low-thrust Guidance; 3-body, eqns from Kaplan

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
34

35

36

37

38

39

40

41

42

43

44

45

46

47

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

PROGRAM WRITTEN BY DAVID KORSMEYER

NASA CONTRACT NAS 17878

ELECTRIC PROPULSION; TO 87-57; TASK 1.3
PROGRAM TRANSLATED AND MODIFIED BY

MIKE D'ONOFRIO AND CHRIS VARNER

EAGLE ENGINEERING, INC.

AUGUST 10,1988

IMPLICIT REAL* 16(A-H,K-Z)

REAL* 16 Isp, MALT
REAL*4 XPLOT,YPLOT,GRAFX,GRAFY

INTEGER VRN,counter,DIRECT,NUM,AU,TH,thrst,VTN

CHARACTER*24 TITLED

DIMENSION X(4), VR(10), VT(5), RJAC(3), GRAFX(20000),

* GRAFY(20000), XPLOT(201), YPLOT(201 )

Open Graphics Routines

CALL J-BEGIN

CALL JDINIT ( 1 )

CALL JDEVON ( 1 )

CALL JIENAB ( 1,4, 1 )

OPEN FILE FOR OUTPUT

OPEN (UNIT = 1, FILE = 'CISLUNAR.OUT', STATUS = 'NEW')

INITIALIZE VARIABLES

TH= 0

MUE = 398600.5

MUM = 4902.794

DE = 4670.6778

DM = 379729.32

EMDIST = DE + DM

NW=.000002665314572

NW2 = NW * NW

gravity = 9.809999999999999D-03
PI= 3.1415926535

NUM=4

MUN = MUM / (MUM + MUE)
SCMASS = 60000.0

44



48
-- 49

50
51
52
53
54
55
56
57
58
59
60
61
62
63

-64
65
66

- 67

68

69
-- 70

71

72

-- 73

74

75

_ 76

77

78

_. 79
8O

81

82

83

84

85
86

87

88

-- 89

9O

91

-- 92

93

94

C

TMAX = 600.0 * 3600.0

Isp = 2500.0
Mdot = 8.200000000000001D-03

ACCELI = 0.0

VRN=7

CALL IO (SCMASS, Isp, Mdot, VRN, THRUST, X, gravity,

+ TITLED, RANGE, DIRECT,MUE, VR, rl, theta, RJAC,

+ PI, VT,VRR,MU,ACCEL1,MUM,NUM,DM,DE,dt,STPALT,'IT,VTN,VR0)
SCMASSV = SCMASS

T'I" = 0.0

counter = 5

thrst = 0

RANGEOFF = 0

RR = QSQRT((X(1) + DE)**2. + X(2)*'2. )

RMT = QSQRT((X(1) - DM)**2. + X(2)*'2. )

PRINT *, ' PLEASE WAIT, GENERATING GRAPH AND DATA FILE'

DO WHILE( DIRECT .EQ. 0 .AND. RMT .GT. STPALT

• .OR. DIRECT .EQ. 1 .AND. RR .GT. STPALT)
IGRAF = IGRAF + 1

IF (IGRAPH .GT. 19999) THEN

PRINT *, 'TO0 MANY DATA POINTS'
STPALT = 1000000.0

GOTO 200

ENDIF

GRAFX(IGRAF) = X(1 )

GRAFY(IGRAF) = X(2)

W = QSQRT(X(3)**2. + X(4)*'2. )

RR = QSQRT((X(1) + DE)**2. + X(2)*'2.)

RMT = QSQRT((X(1) - DM)**2. + X(2)*'2.)

IF (X(1).LT.210000.0) THEN
xf = X(1 )+DE

dt = INT(.01 * RR)

IF (RR.LT.7800.0.AND.DIRECT.EQ.1) dt=5.

IF(RR.GT.40000.0.AND.DIRECT.EQ.0) THEN

CALL JACOBI(X,CJ,RR,EMDIST,RMT,MUN,W,NW)
ELSE

C J= 10.

END IF

ELSE

LUNAR PORTION

xf = X(1)-DM

dt = QFLOAT(INT(.02 * RMT))

IF(RMT.LT. 2200.0.AND.DIRECT.EQ.0) dt=3.

IF(RMT.GT.6000.0.AND.DIRECT.EQ. 1) THEN

CALL JACOBI(X, C.I,RR,EMDIST,RMT,MUN,W,NW)
ELSE

C J= 10.0

45



95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110
I11

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126
127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

17

+

171

+

172

200

C

C

C

END IF

END IF

theta = QATAN2(X(2), xf)

IF (theta .LT. - (PI/2.0)) theta = theta + 2. * PI

ALPHA = theta + PI / 2.0

TT=Tr+ dt

SCMASSV = SCMASSV - Mdot * dt * QFLOAT ( TH )

IF ( SCMASS/SCMASSV .LT. 0.0 ) THEN
STPALT = 10000000.0

GOTO 200

ENDIF

DELT_V= gravity *Isp *QLOG(SCMASS/SCMASSV)
ACCEL = THRUST / SCMASSV

CALL RUK4 (X, NUM, dt, MU,ACCEL1,DM,DE,MUM,

+ MUE,TH,VR,thrst,CJ,ACCEL,RANGE,DIRECT,ALPHA,

• RANGEOFF,theta,RJAC,VTN,DIST,VRR,VRN,VR0,TT,VT)

IF (counter.GE.5) THEN
AU= 1

WRITE(AU,17) "IT / 3600.0,W,RR

FORMAT ('0Time Elapsed = ',F8.2,' hrs.'J,' Velocity = ',

F9.4, 'km/s',/,' Dist. Earth = ',F12.2,'km')

WRITE (AU,171) RMT, SCMASS-SCMASSV, DELT_V

FORMAT (' Dist. Moon = ',F12.2, 'km',/,' Prop. mass = ',

F12.2,'kg',/,' Delt vel. = ',F10.5,'km/s')
WRITE (AU,172) CJ

FORMAT (' JACOBIAN = ',E15.8)
counter=0

ELSE

counter = counter + 1

END IF

END DO

print *, 'Orbit Completed.'

DRAW GRAPHICS

CALL GATI'RI (1,0,1.0)

CALL GATTRI (2,0,1.0)

CALL GATTRI (3,0,1.0)

CALL GATTRI (4,5,1.0)

CALL GA'ITRI (5,5,1.0)

CALL GATTRI (6,5,1.0)

CALL GA'ITRI (7,5,1.0)

CALL GATrRI (11,5,1.0)

CALL

CALL
GATTRI (12,5,1.0)

GCHART (1,5,TITLED,24)

CALL GAXIS (1,0,-250000.0,500000.0,0,'Distance with respect to

* barycenter ',37,-275000.0,325000.0,0,'km',2)
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142

--143

144

145

146

147

148

149

150

151

152

153

154

--155

156

157

--158

159

160

--161

162

163

--164

165

166

--167

168

28

38

RAD = 6371.23

DO 38 IPASS =1,2

IF (IPASS .EQ. 2) RAD = 1739.35

DO 28 IN = 1,200
INM1 =IN- 1

XPLOT(IN) = RAD * QCOS( QFLOAT (INM1) * 10. * PI/180.)

YPLOT(IN) = RAD * QSIN( QFLOAT (INMI) * 10. * PI/180.)

IF ( IPASS .EQ. 1 ) XPLOT ( IN ) = XPLOT ( IN ) - DE

IF ( IPASS .EQ. 2 ) XPLOT ( IN ) = DM + XPLOT ( IN )
CONTINUE

CALL JOPEN

CALL JCOLOR ( 4 )

CALL GCURVE (XPLOT,YPLOT, 200, 0, 0, 0 )
CALL JCLOSE
CONTINUE

CALL JOPEN

CALL JCOLOR ( 6 )

CALL GCURVE ( XPLOT, YPLOT, 200, 0, 0, 0 )

CALL JCOLOR ( 2 )

CALL GCURVE ( GRAFX, GRAFY, IGRAF, 0, 0, 0 )
CALL JCLOSE

CLOSE ( UNIT = 1)

CALL/PAUSE ( 1 )

CALL JDEVOF ( 1 )

CALL JDEND ( 1 )

STOP

END
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CURVE Subroutine Description

The CURVE subroutine is a stand alone linear, logarithmic, power, and exponential curve fitting

routine that was taken from a Public Domain library and modified to retum the class (i.e. linear,

log., power, or exp.) of curve that best fit the input data.

CURVE Subroutine Passed Variables

CALL CURVE (PRO, PVT0, J, VT0)

SUB CURVE (X0, Y0, N, VT0)

N

VTO

xO

YO

The number of data points.

The array of the coefficients of the curve fit.

The array of the sampled radial positions.

The array of the tangential velocity component at each sampled position.
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BASIC CODE

49



DEFDBL A-H, J-Z

"LEAST MEAN SQUARES CURVE FITTING by Don McDade, Mod/fied by David Korsmeyer
SUB CURVE (X(), y(), N, VT())

KEDIM A(4), B(4), R(4)
• Calculate curves

SX - 0: SY - 0: SkY - 0: SXSQ - 0:. SYSQ - 0: SXJ - 0: SYJ - 0: SkYJ - 0

SXJSQ - 0: SYJSQ - 0:. SXK - 0: SYK - 0: SXYK - 0:.SXKSQ - 0: SYKSQ --"0

SXM - 0: SYM - 0: SXYM - 0: SXMSQ - 0: SYMSQ - 0: J - 0: K - 0: M - 0
FOR I - 1 TO N

SX - SX + X(I): SY - SY + Y(I): SkY - SXY + X(I) * Y(I)

SXSQ - SXSQ + X(I) " x(I): SYSQ - SYSQ + Y(I) " Y(I) 'linear

IF Y(I) > 0 THEN J - J + l: LY - LOG(Y(I)): SXJ - SXJ + X(I): SYJ - SYJ + LY: SX

YJ - SkyJ + X(I) • LY: SXJSQ - SXJSQ + X(I) " X(I): SYJSQ - SYJSQ + LY • LY'exponential

IF X(I) > 0 THEN K - K + I: LX - LOG(X(I)): SXK - SXK + LX: SYK - SYK + Y(I): SX

YK - SXYK ÷ LX - Y(I): SXKSQ - SXKSQ + LX * LX: SYKSQ - SYKSQ + Y(I) " Y(1)'logarithm.ic

IF X(I) > 0 AND Y(I) > 0 THEN M - M + I: SXM - SXM + LX: SYM - SYM + LY: SXYM -

SXYM + LX * LY: SXMSQ - SXMSQ + LX * LX: SYMSQ - SYMSQ + LY * LY'powerNEXT I

A(1) - (SY * SXSQ - SX * Sky) / (N " SXSQ - SX * SX)

B(1) - (N * SkY - SX " SY) / (N * SXSQ - SX * SX)

R(1) - (N * SXY - SX * SY) / SQR((N * SXSQ - SX * SX) * (N * SYSQ - SY * SY))

PRINT SPACES(39): IF B(1) >- 0 THEN PRINT "y-"; A(1); "+"; B(1); "x"; ELSE PRIN
T "y-"; A(1); B(1); "x";

LOCATE CSRLIN, 56: PRINT "R-"; R(1)

IF J < 2 THEN A(2) - 0: B(2) - 0: R(2) - 0

A(2) - EXP((SYJ - SXJSQ - SXJ " SXYJ) / (J * SXJSQ - SXJ * SXJ))

B(2) - (J - SXYJ - SXJ " SYJ) / (J " SXJSQ - SXJ • SXJ)

R(_) - (J - SXYJ - SXJ • SYJ) / SQR((J * SXJSQ - SXJ " SXJ) " (J * SYJSQ - SYJ "
SYJ) )

PRINT "y-"; A(2); "eA(-; B(2); "x)"; : LOCATE CSRLIN, 56: PRINT "R-"; R(2)
IF M < 2 THEN A(3) - 0: B(3) - 0: R(3) - 0

A(3) - EXP((SYM " S>IMSQ - SXM " SXYM) / (M " SXMSQ - SXM - SXM))
B(3) - (M * SXYM - SXM * SYM) / (M " SXMSQ - SXM - SXM)

R(3) - (M * SXYM - SXM - SYM) / SQR((M * SXMSQ - SX.M - SXM) - (M " SYMSQ - SYM -
SYM) )

PRINT "y--; A(3); "x^("; B(3); ")"; : LOCATE CSKLIN, 56: PRINT "R="; H(3)
IF K < 2 THEN A(4) - 0: B(4) = 0: R(4) - 0

A(4) = (SYK * SXKSQ- SXK - SXYK) / (K * SXKSQ - SXK - SXK)

B(4) - (K " SXYK - SXK - SYK) / (K " SXKSQ - SXK - SXK)

R(4) - (K " SXYK - SXK * SYK) / SQR((K - SXKSQ - SXK - SXK) * (K " SYKSQ - SYK
SYK) )

IF B(4) >- 0 THEN PRINT "y--; A(4); "+"; B(4); "in x"; ELSE PRINT "y="; A(4)- B
(4); "ln x";

LOCATE CSRLIN, 56: PRINT "R-"; R(4)
MAXB - ABS(R(1)) : VTN - 1
FOR SORT - 1 TO 4

MAX - ABS(R(SORT)) : CC - SORT

IF MAX > MAXB THEN MAXB - MAX: VTN - CC
NEXT SORT

VT(1) - A(VTN) : VT(2) - B(VTN)

PRINT "NUMBER" ; VTN; " "WAS CHOSEN"
END SUB
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173
174
175
176
177
178
179
180
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182
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184

185
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189
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191

192
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195
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197

198

199

200

201

202

203

204

205

206

207

208

209
210

211

212

213

214

215

216

217

218

SQUARES CURVE FrI'TING by Don McDade, Modified by David Korsmeyer

SUBROUTINE CURVE (X, Y, N, VT,VR0,VTN)

IMPLICIT REAL* 16 (A-H,O-Z)

IMPLICIT I/qTEGER (I-N)

INTEGER VTN,AU,CC

REAL* 16 MAXB,MAX,LX,LY

DIMENSION A(4), B(4), R(4), VT(5), X(2100), Y(2100)
AU= 1

Calculate curves

SX = 0.0

SY = 0.0

SXY = 0.0

SXSQ = 0.0

SYSQ = 0.0
SXJ = 0.0

SYJ = 0.0

SXYJ = 0.0

SXJSQ = 0.0

SYJSQ = 0.0
SXK = 0.0

SYK = 0.0

SX'YK = 0.0

SXKSQ = 0.0

SYKSQ = 0.0
SXM = 0.0

SYM = 0.0

SXYM = 0.0

SXMSQ = 0.0

SYMSQ = 0.0
J=O

K=O

M=O

DO lOI= 1, N

SX = SX + X(I)
SY = SY + Y(I)

SXY = SXY + X(I) * Y(I)

SXSQ = SXSQ + X(I) * X(I)

SYSQ = SYSQ + Y(I) * Y(I)

IF( Y(I).GT. 0.0) THEN
J=J + 1

LY = LOG(Y(I))

SXJ = SXJ + X(I)
SYJ = SYJ + LY

SXYJ = SXYJ + X(I) * LY

SXJSQ = SXJSQ + x(I) * x(I)

SYJSQ = SYJSQ + LY * LY
END IF
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220
221
222
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225
226
227
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230
231
232
233
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238
239
240
241
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243
244
245
246
247
248
249
250
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252
253
254
255
256
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258
259
260
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262
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265

IF (X(I).GT.0.0)THEN
K=K+I
LX = LOG(X(I))
SXK = SXK + LX

SYK = SYK + Y(I)

SXYK = SXYK + LX * Y(I)

SXKSQ = SXKSQ + LX * LX

SYKSQ = SYKSQ + Y(I) * Y(I)
END IF

IF( X(I).GT.0.0. AND. Y(I).GT.0.0) THEN
M=M+I

SXM = SXM + LX
SYM = SYM + LY

SXYM = SXYM + LX * LY

SXMSQ = SXMSQ + LX * LX

SYMSQ = SYMSQ + LY * LY
END IF

I0 CONTINUE

A(1) = (SY * SXSQ - SX * SXY) / (QFLOAT(N) * SXSQ - SX * SX)

B(I) = (QFLOAT(N) * SXY - SX * SY) / (QFLOAT(N) * SXSQ - SX * SX)

R(I ) = (QFLOAT(N) * SXY - SX * SY) /QSQRT((QFLOAT(N) *

+SXSQ - SX * SX) * (N * SYSQ - SY * SY))

IF (B(1) .GE. 0.0 ) THEN

WRITE(AU,17) A(1), B(1), R(1)
ELSE

WR/TE(AU,27) A(1), B(1), R(1)
END IF

17 FORMAT('0Y=',E15.8,'+',E15.8,' X',T50, 'R = ',E15.8)

27 FORMAT('0Y=',2E15.8,' X',T50, 'R =', E15.8)

IF (J.LT.2) THEN

A(2) = 0.0

B(2) = 0.0

R(2) = 0.0
END IF

A(2) = EXP((SYJ * SXJSQ - SXJ * SXYJ) /

+(QFLOAT(J) * SXJSQ - SXJ * SXJ))

B(2) = (QFLOAT(J) * SXYJ - SXJ * SYJ) /

+ (QFLOAT(J) * SXJSQ-SXJ**2.)

R(2) = (QFLOAT(J) * SXYJ - SXJ * SYJ) / QSQRT((QFLOAT(J) *

+SXJSQ - SXJ * SXJ) * (QFLOAT(J) * SYJSQ - SYJ * SYJ))
WRITE(AU,37) A(2), B(2), R(2)

37 FORMAT(' y=', E15.8, 'e (', E15.8, 'x)',T50,'R = ',E15.8)

IF (M.LT.2) THEN

A(3) = 0.0

B(3) = 0.0

R(3) = 0.0
END IF
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A(3) = EXP((SYM * SXMSQ - SXM * SXYM)/(M*SXMSQ - SXM * SXM))

B(3) = (QFLOAT(M) * SXYM - SXM * SYM) /

+(QFLOAT(M) * SXMSQ - SXM * SXM)

R(3) = (QFLOAT(M) * SXYM - SXM * SYM) / QSQRT((QFLOAT(M) * SXMSQ -
+SXM * SXM) * (QFLOAT(M) * SYMSQ - SYM * SYM))

WRITE(AU,47) A(3), B(3), R(3)

47 FORMAT(' y=', E15.8, 'x (',E15.8, ')',T50,'R = ',E15.8 )

IF (K.LT.2) THEN
A(4) = 0.0

B(4) = 0.0
R(4) = 0.0

END IF

A(4) = (SYK *SXKSQ - SXK *SXYK)/(QFLOAT(K) * SXKSQ -SXK * SXK)

B(4) = (QFLOAT(K) * SXYK -SXK * SYK) / (QFLOAT(K) * SXKSQ -
+SXK * SXK)

R(4) = (QFLOAT(K) * SXYK -SXK * SYK)/QSQRT((QFLOAT(K) *SXKSQ -
+SXK * SXK) * (QFLOAT(K) * SYKSQ - SYK * SYK))

IF (B(4).GE.0.0) THEN

WRFFE(AU,57) A(4), B(4), R(4)

57 FORMAT(' y=',E15.8, '+',E15.8, 'In x',T50, 'R = ',E15.8)
ELSE

WRITE(AU,67) A(4), B(4), R(4)

67 FORMAT(' y=',E15.8,E15.8, 'In x',T50,'R = ',E15.8 )
ENDIF

MAXB = QABS(R(1))
VTN=I

DO 20 ISORT = 1,4

MAX = QABS(R(ISORT))
CC = ISORT

IF (MAX.GT. MAXB) THEN
MAXB =MAX

VTN- CC
END IF

20 CONTINUE

VT(1 ) - A(VTN)

VT(2) = B(VTN)

WRITE(AU,117) VTN

117 FORMAT ('0NUMBER ', I4, ' WAS CHOSEN')
RETURN

END
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DER1 Subroutine Description

The DER1 subroutine is called by the Runge-Kutta integration routine from SPIRAL. It

contains the equations of motion for a two-body system. The only perturbation force is that of

the spacecraft's engine thrust. This thrust is incorporated in the equations of motion in the form

of accelerations, a_ and av.

x = --- + ax
r 2

y = r2 + a_

The acceleration of the spacecraft due to the thrust of the propulsion system was determined by

calling the subroutine GUIDE. This subroutine returned the values of GD1 and GD2 which are

the magnitude of the thrusting acceleration in the x and y direction.
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DER1 Subroutine Internal and Share Variables

SUB DERI (X0, DX0) STATIC

DX0

grnr

R

r2

V

x0

The array of the derivatives being integrated by the Runge-Kutta.

The gravitational force on the spacecraft at the given radial distance.

Radial distance of the spacecraft from the central body (km).

Square of the radius from the central body (kmA2).

The magnitude of the velocity of the spacecraft (krn/s).

State Vector of the spacecraft's position and velocity (km and kin/s).
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DER Subroutine Flowchart

DER

!
I Calculate the derivatives i

of motion in the restricted I

three-body system I

ECall GUIDE

I
RETURN



BASIC CODE
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DEFDBL A-H° J-Z

SUB DERI (X(), DX()) STATIC
DX(1) - X(3)

DX(2) - X(4)

r2 - X(1) ^ 2 + X(2) ^ 2
R - SQR (r2)

gmr- -MU / r2

V- SQR(X(3) ^ 2 + X(4) _ 2)

DX(3) - gmr * X(1) / R + ACCEL1 * X(3) / V

DX(4) - gmr " X(2) / R + ACCEL1 t X(4) / V
END SUB
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337
338
339
340
341
342
343
344
345
346
347

SUBROLrrINE DER1(X, DX,MU, ACCELI )

IMPLICIT REAL* 16 (A-Z)

DIMENSION X(4),DX(4)

DX(1 ) = X(3)

DX(2) = X(4)

r2 = X(I)** 2 + X(2)** 2
R = QSQRT(r2)

gmr = -MU /r2

V = QSQRT(X(3) ** 2 + X(4) ** 2)

DX(3) = gmr * X(1) / R +ACCELI *X(3) / V

DX(4) = gmr * X(2) / R + ACCELI * X(4) / V
RETURN

END
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DER Subroutine Description

The DER subroutine contains the equations of motion for the spacecraft in the restricted three-

body system. These are:

x - ny

• •

y + 2nx

_[ ___:+ __]
- n2x = %x r, r.

_[ ____.+ __]
- nZY = %y ro rm

Where av is the guidance acceleration in the y-direction, a_ is the guidance acceleration in the x-

direction, Ix is the gravitational parameter of the target planet, and r is the radial distance of the

spacecraft from the target planet.
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DER Subroutine Intemal and Shared Variables

SUB DER (X0, DX0) STATIC

DX0

dx3

dx4

GD1

GD2

muroe

murom

ROE

xo

xde

xdm

The array of the derivatives being integrated by the Runge-Kutta.

The second derivative of the x-component (km]s^2).

The second derivative of the y-component (km]s^2).

The x-acceleration of the spacecraft from GUIDE (kin/s^2).

The y-acceleration of the spacecraft from GUIDE (km/s^2).

The gravitational parameter of the Earth divided by ROE.

The gravitational parameter of file Moon divided by ROM.

The cubed distance of the spacecraft from the Earth in the rotating x,y coordinates

(kin^3).

State Vector of the spacecraft's position and velocity in the rotating x,y coordinates
(km and kin/s).

The x-coordinate of the Earth in the rotating x,y coordinates (kin).

The x-coordinate of the Moon in the rotating x,y coordinates (km).
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DEFDBL A-H, J-Z

SUB DER (X(), DX()) STATIC

DX(1) - X(3)

DX(2) - X(4)

xde - X(1) + DE: xdm - X(1) - DM
X22 - X(2) ^ 2

ROE - (xde _ xde + X22) ^ 1.5#

'xdot (kin/s)

'ydot (km/s)

'coordinates of the Earth and Moon
•y-squared

'd/stance of s/c from Earth (kin)
ROM - (xdm * xdm + X22) * 1.5# 'distance of s/c from Moon (km)
muroe - MUE / ROE: murom - MUM / R0M 'mu/radius ratios

dx3 - -muroe * xde - murom * xdm + 2# " X(4) " NW + NW2 * X(1) 'x-dbldot (km/s^_ "
)

dx4 - -X(2) * (muroe + murom) - 2# * X(3) " NW + NW2 • X(2) 'y-dbldot (km/s^_
)

CALL GUIDE(GD1, GD2, X())

DX(3) - dx3 + GDI: DX(4) - dx4 + GD2
END SUB
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_08

309

_10

_11

312

313

_14

315

316

_17

318

319

_20

321

a22

,23
_24

_25

26

:_27

_28

29

_30

331

32

-333

SUBROUTINE DER (X, DX, DM, DE ,MUM, MUE ,TH ,VR, thrst,

* CJ,ACCEL,RANGE,DIRECT,ALPHA,RANGEOFF,THETA,

* RJ AC,VTN,VT,DIST,VRR,VRN,VR0,TT)

IMPLICIT REAL* 16 (A-H,J-Z)

DIMENSION DX(4),X(4),VR(10),VT(5), RJAC(3 )

INTEGER VTN,VRN,DIRECT,RANGEO FF,TH,thrst
NW= 2.665314572E-06
nw2 = nw**2.

DX(1) = X(3)

DX(2) = X(4)

xde = X(I ) + DE

xdm = X(1 ) - DM

X22 = X(2) ** 2.

ROE = (xde * xde + X22) ** 1.5

ROM = (xdm * xdm + X22) ** 1.5
muroe = MUE / ROE

murom = MUM / ROM

dx3 = -muroe * xde - murom *xdm +2 * X(4) * NW + NW2 * X(1)

dx4 = -X(2) * (muroe + murom) - 2 * X(3) * NW + NW2 * X(2)

CALL GUIDE(GDI, GD2, X, DIRECT,PI,ACCEL,DM,ALPHA,DE,RANGEOFF,

+ RANGE,thrst,CJ ,thet a,RJAC,TH,VTN,VT,DIST,VR,VRR,
+ VRN,VR0,TT)
DX(3) = dx3 + GDI

DX(4) = dx4 + GD2
RETURN

END
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ERASE Subroutine Description

This subroutine is used to reinitialize the velocity component arrays. The arrays are used to

provide curve fit data to the POLYFIT subroutine. This subroutine does not exist in the BASIC

version of CISGRAPH.

ERASE Subroutine Variables

VRO

VR0

VT0

First point of the radial velocity array used to produce guidance curves.

Radial velocity array used to produce guidance curves.

Tangential velocity array used to produce guidance curves.
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SUBROUTINEERASE(VR,VT, VR0)
REAL*16 VR0,VR(10),VT(5)
VR0= 0.0
DO 101=1,5

VR(I) = 0.0

VR(I+5) = 0.0

VT(I) = 0.0
10 CONTINUE

RETURN

END
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GUIDE Subroutine Description

The GUIDE subroutine controls the direction and magnitude of the spacecraft's thrusting

acceleration. A set of guidance parameters are determined depending on the direction of the

spacecraft's trajectory. When the spacecraft is in the departure phase of the trajectory the

acceleration is along the velocity vector of the spacecraft. When the spacecraft Jacobian value

passes the first control Jacobian, Jacl, the program checks the quadrant the spacecraft is in, and

leaves the thrust on, if it is in the appropriate quadrant; turns it off if not. If the spacecraft's

Jacobian value has passed the second control Jacobian, Jac2, then the spacecraft retums to

continuously thrusting along the velocity vector. When the spacecraft's Jacobian has passed the

third control Jacobian, Jac3, the spacecraft's thrust is turned off and the spacecraft drifts until its

distance from the departure planet has passed the value of RANGE. This initiates the capture

phase of the trajectory. The tangential and radial components of the reference trajectory are

calculated from their parametric functions and the direction and magnitude of the capture

acceleration is determined.
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GUIDE Subroutine Internal and Shared Variables

SUB GUIDE (GD1, GD2, X0)

ACCEL Acceleration of the spacecraft during the cislunar trajectory (km/s^2).

ACXT The tangential acceleration of the spacecraft in the x-direction (km/s^2).

ACYT The tangential acceleration of the spacecraft in the y-direction (krn/sn2).

alph The angle between the velocity vector and the tangential component of velocity
(radians).

ALPHA theta + PI/2

am Magnitude of the capture guidance acceleration (km/s^2).

amx The capture guidance acceleration in the x-direction (km/s^2).

amy The capture guidance acceleration in the y-direction (km/s^2).

ANGLE1 The angle defining the beginning of the third quadrant area around the departure

planet during the departure phase of the trajectory generation (radians).

ANGLE2 The angle defining the end of the third quadrant area around the departure planet

during the departure phase of the trajectory generation (radians).

CJ Instantaneous Jacobian constant of the spacecraft.

DIRECTION Numeric indicator of the direction of the trajectory generation, Earth to Moon (0)
or Moon to Earth (1).

DIST The distance the spacecraft is away from the capture planet (km).

dt Integration step size (seconds).

GD1 The x-acceleration of the spacecraft from the guidance control equations

(km/s^2).

GD2 The y-acceleration of the spacecraft from the guidance control equations
(km/s^2).

The distance from the capture planet (km/1000).

Range from initial planet that the capture phase is initiated (km).

rl

RANGE
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RANGEOFF

RJACO

tC

TH

theta

thrst

"Iq"

VMAG

VR0

VRN

VRR

VT0

VTN

VTT

VTV

xo

XACCEL

XRANGE

Flag for GUIDE subprogram indicating if the spacecraft has entered the capture
phase of the trajectory generation.

The array of the Jacobian constants used as controls for the departure portion of
the trajectory generation.

Empirical time constant used to change the control velocity difference into an

acceleration (seconds).

Numeric indicator of the spacecraft's thrust, on (1) or off (0).

Angle between the radius vector to the spacecraft from the controlling gravita-

tional body and the x-axis. Dependent upon xf.

Flag for the spacecraft on its spiral escape indicating the passage of the second
control Jacobian, (0) off (1) on.

Total time of trajectory generation (seconds).

Magnitude of the velocity of the spacecraft (km/sA2).

The array of parameterized radial velocity component coefficients.

Degree of the radial velocity polynomial curve fit.

The parameterized radial velocity magnitude (km/s).

The array of the parameterized tangential velocity component coefficients.

Class of equation for tangential velocity parameterization, linear (1), exponential
(2), power (3), or logarithmic (4).

The parameterized tangential velocity magnitude (km/s).

Loop variable for the radial velocity polynomial.

State Vector of the spacecraft's position and velocity in the rotating x,y coor-
dinates (km and km/s).

The magnitude (+ or -) of the ACCEL used (kin/s^2).

The magnitude of the distance in the x - direction the spacecraft is from the
departure planet (km).
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GUIDE Subroutine Flowchart

GUIDE

Earth _ Moon

L_ Set control constants S

Set

Capture Departure

No

!Show Position

on Trajectory

No

Escape

Yes Yes

No

Disable

Departure Flag

Tanc

Calculate Tang.

Control Velocity

ICalculate Radial
Control Velocity I

Calculate Control JThrust for Capture

No

Reached

Yes No

Thrust Off

Yes y

J Set Escapeflaq J

-I
lJ Thrust On _

I
RETURN

Calculate Tangential
Escape Thrust
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DEFDBL A-H, J-Z

SUB GUIDE (GDI, GD2, X()) 'Guidance subprogram
SHARED TT, theta, ALPHA, CJ, dr, SC24ASSV, thrst

SEARED VT(), VR(), DIRECTION, ACCEL, RJAC(), RANGEOFF
SELECT CASE DIRECTION

CASE 0 'earth to moon

ANGLE1 - PI: ANGLE2 - 1.5# * PI: XACCEL - ACCEL

DIST - SQR((X(1) - DM) ^ 2 + X(2) * 2): XRANGE - X(1): alph - AI_HA
CASE 1 'moon to earth

ANGLE1 - -6#: ANGLE2 - 0# : XACCEL - -ACCEL

DIST - SQR((X(1) + DE) ^ 2 + X(2) ^ 2): XRANGE - ABS(DM - X(1)): alph
ALPHA + PI

END SELECT

VMAG - SQR(X(3) ^ 2 + X(4) ^ 2)

ACXT - ACCEL * X(3) / VMAG: ACYT - ACCEL * X(4) / VMAG 'components of accel, T
gen_ial

IF RANGEOFF - 1 THEN RANGE - 50000

IF XRANGE < RANGE THEN

IF thrst - 0 THEN

IF CJ < RJAC(1) THEN

IF theta > ANGLE1 AND theta < ANGLE2 THEN

IF CJ < RJAC(2) THEN thrst - 1

TH - 1#

ELSE

TH - 0#

END IF

ELSE

TH - I#

END IF

ELSEIF CJ > RJAC(3) THEN

TH - 1#

ELSE

TH - 0#

END IF

GDI - ACXT * TH: GD2 - ACYT * TH "thrusting tangentially spiral out
ELSE

IF RANGEOFF - 0 THEN LINE (X(1), X(2) + 5000)-(X(1), X(2) - 5000), 15
RANGEOFF - 1

tc - i00#: r_ - DIST / 1000#

SELECT CASE VTN

CASE i

VTT - VT(1) + VT(2) * rl
CASE 2

CASE 3

CASE 4

END IF

END SUB

VTT - VT(1) * EXP(VT(2))

VTT - VT(1) * (rl) ^ VT(2)

VTT - VT(1) + VT(2) * LOG(rl)
END SELECT

VRR - VR(0)

FOR VTV - 1 TO VRN

VRR - VRR + VR(VTV) * rl ^ VTV
NEXT VTV

amx - -ACXT + ((VRR . COS(theta) - VTT * COS(alph)) - X(3)) / tc

amy - -ACYT + ((VTT * SIN(alph) + VRR * SIN(theta)) - X(4)) / tc

am - SQR(amx ^ 2 + amy ^ 2)
GDI - ACCEL / am * amx

GD2 - ACCEL / am * amy: TH - i#
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C

SUBROUTINEGUIDE (GD1,GD2,X, DIRECT, PI, ACCEL, DM,ALPHA,DE,
+ RANGEOFF,RANGE, thrst,CJ,theta,RJAC,TH,
+ VTN,VT,DIST,VR,VRR,VRN,VR0,q'T)
IMPLICIT REAL* 16(A-H,J-Z)
IMPLICIT INTEGER (I)
INTEGERVTN,VRN,DIRECT,RANGEOFF,TH,thrst
DIMENSION X(4),RJAC(3),VT(5),VR(10)

IF (TT/3600..GT. 312.)PRINT *, 'VR0 ', VR0
PI= 3.1415926535
IF (DIRECT.EQ.0)THEN
ANGLE1 = PI
ANGLE2 = 1.5* PI
XACCEL = ACCEL
DIST = QSQRT((X(1)- DM) ** 2.+ X(2) ** 2.)
XRANGE = X(1)
alph= ALPHA

ELSE

ANGLE1 =-6.0

ANGLE2 = 0.0

XACCEL = -ACCEL

DIST = QSQRT((X(1) + DE) ** 2. + X(2) ** 2.)

XRANGE = QABS(DM-X(1))

Alph = ALPHA + PI
ENDIF

VMAG = QSQRT(X(3) ** 2. + X(4) ** 2.)

ACXT = ACCEL * X(3) / VMAG

ACYT = ACCEL * X(4) / VMAG

IF (RANGEOFF.EQ. 1) RANGE = 50000

IF (XRANGE.LT.RANGE) THEN

IF ( thrst .EQ. 0 ) THEN

IF ( CI .LT. RJAC(1) ) THEN

IF ( theta .GT. ANGLE1 .AND. theta .LT. ANGLE2 ) THEN

IF ( CJ. LT. RJAC(2) ) thrst = 1
TH=I

ELSE

TH--0

ENDIF

ELSE

TH=I

ENDIF

ELSE IF (CJ.GT.RJAC(3)) THEN
TH=I

ELSE

TH---0

ENDIF

GDI=ACXT * QFLOAT(TH)

GD2 = ACYT * QFLOAT(TH)
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ELSE
RANGEOFF=I
tc = 100.

rl = DIST/1000.

IF (VTN.EQ.1) V'I"q'=VT(1) +VT(2) * d

IF (VTN.EQ.2) VTT=VT(1) * EXP(VT(2))

IF (VTN.EQ.3) VTT = VT(1) * d **VT(2)
VRR = VR0

IF (VTN.EQ.4) VTT = VT(1) + VT(2) * LOG(d)

DO 10 VTV= 1,VR.N

VRR= VRR + VR(VTV) * rl ** VTV
CO_

amx = -ACXT + ((VRR * QCOS(theta) - V'IT*QCOS(alph))-X(3))/tc

amy = -acyt + ((VTr*QSIN(alph) + VRR*QSIN(theta))-X(4))/tc

am=QSQRT(amx**2. + amy**2.)
GD1 = ACCEL/am * amx

GD2 = ACCEL/am * amy
TH= 1

ENDIF

RETURN

END
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IO Subroutine Description

The IO subroutine handles the initial input of spacecraft characteristics, control variables, and

various use choices. The initial output screen formatting and graphics setup is also performed in

this subroutine. The spacecraft's initial operating characteristics, such as initial mass, I_, and the

mass flow rate of the propulsion system, are selected in addition to the direction of the trajectory

generation. Then the user is asked whether a new set of guidance velocity parametrics should be

generated based upon the input spacecraft characteristics. If the response is yes, the program

control is passed to another subroutine called SPIRAL. This subroutine generates the parametric

velocity prof'fles. Upon completion of SPIRAL or if the response to generating velocity

parametrics is no, the IO subroutine prompts the user to input the spacecraft's initial position and

velocity. The next question asks if the user would like to modify the control Jacobians and

Range. These control values are used by the program to control when the spacecraft escapes

from its outbound spiral and begins the capture phase of the trajectory. The default values are

presented and the user can modify any of them. After all of the inputs and responses have to be

recorded the IO subroutines sets up the screen for the trajectory generation and retums control to

the Main program.
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IO Subroutine Intemal and Shared Variables

SUB IO (VR0, X0, DIRECTION, RJAC0) STATIC

DIRECTION

rl

RJACO

thet

theta

titles

vexp

VR0

VT0

X0

Numeric indicator of the direction of the trajectory generation, Earth to Moon (0)

or Moon to Earth (1).

Initial radius value, input from keyboard (km).

The array of the Jacobian constants used as controls for the departure portion of

the trajectory generation.

Angle, in radians, of theta.

Initial angle, in degrees, spacecraft is from - x-axis, input from keyboard.

String Variable for the title of the output screen.

Velocity magnitude of spacecraft, input from keyboard (kin).

The array of the parameterized radial velocity component coefficients.

The array of the parameterized tangential velocity component coefficients.

State Vector of the spacecraft's position and velocity in the rotating x,y coordi-
nates (km and km/s).
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I0 Subroutine Flowchart
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BASIC CODE
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DEFDBL A-H, K-Z

SUB IO (VR(), VT(), X(), DIRECTION, KJAC()) STATIC

CLS

SCREEN 0

PRINT " _"

DDD ._

PRINT "3 Trajectory Generation Model for Low-Thrust OTVs in Cislunar Space
3"

PRINT "3 Using a Thrusting Control Algorithm in the Restricted three-body
3-

PRINT "3 formulation of the Earth-Moon system. {Gus Babb copy} - DJK, 4/1/8 _

3"
PRINT "

DDD I"

DBOX 6, i, 11, 80

IX)CATE 7, 3: PRINT "Spacecraft intial mass -", SCMASS;

LOCATE 8, 3: PRINT "Specific Impulse of engine -", Isp;

LOCATE 9, 3: PRINT "Mass flow rate of engines - ", Mdot

LOCATE i0, 3: INPUT "Do you wish to specify s/c characteristics? (y or n)", B _

IF UCASE$ (B$) - "Y" THEN

DBOX II, I, 16, 80

LOCATE 12, 3: INPUT "Spacecraft intial mass -", SCMASS

LOCATE 13, 3: INPUT "Specific Impulse of engine -", Isp

LOCATE 14, 3: INPUT "Mass flow rate of engines - ", Mdot

LOCATE 15, 3: INPUT "Degree of polynomial curve fit (2-7) ", VRN

END IF

THRUST - gravity * Isp * Mdot 'thrust dependent on mass flow and isp
PRINT

INPUT "Starting Orbit about the Earth or the Moon? (e or m) ", AS

IF UCASE$ (AS) - "M" THEN

DIRECTION - I ' flag indicates s/c going moon to earth

RANGE - 110000

titles - "Moon to Earth Trajectory"

INPUT "Do you want to generate parmetric velocity curves? ", A$
IF UCASE$ (AS) - "Y" THEN

ERASE VT, VR, X

X(0) - 0#: X(2) - 7178#: X(3) - -SQR(MUE / X(2)) : X(4) - 0#

SPIRAL X(), DIRECTION, 225000, VT(), VR()
ELSE

VR(0) - 10.92448764296168#

VR(1) - -.6486459794313275#

VR(2). - .0233450835020553#

VR(3) - -4.502555723665775D-04

VR(4) - 4.767029852095007D-06

VR(5) - -2.760604361514407D-08

VR(6) _ 8.185026033125225D-II

VR(7) - -9.6764120959764D-14

VT(1) - 3.880360674664431D-02

VT(2) - -4.680399272731233D-03

VTN- 1

END IF

INPUT "Input the radius from the Moon's center ", rl

INPUT "Input angle (deg) from-x axis ", theta

INPUT "Do you wish to specify the velocity? (y or n) ", B$

IF UCASE$ (B$) - "Y" THEN

INPUT "Input absolute velocity ", vexp
ELSE

vexp - -SQR(MUM / rl)
END IF

thet - theta * PI / 180#

X(1) - rl " COS(thet) + DM

X(2) - rl * SIN(thet)

X(3) - -vexp * SIN(thet)

X(4) - vexp * COS(thet)

INPUT "Modify Control Jacobians and Range? ", C$

IF UCASE$ (C$) - "Y" THEN
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ELSE

ELSE

END IF

PRINT "Default Values 3.05, 2.82, 2.50"

PRINT "Jacl - ", RJAC(1) : INPUT RJAC(1)

PRINT "Jac2 - ", RJAC(2): INPUT RJAC(2)

PRINT "Jac3 - ", RJAC(3): INPUT RJAC(3)

PRINT "Range - ", RANGE: INPUT RANGE

RJAC(1) - 3.05#: RJAC(2) - 2.82#: RJAC(3) - 2.5#

DIRECTION - 0 'flag indicates s/c going earth to moon
RANGE - 255000

titles - "Earth to Moon Trajectory"

INPUT "Do you want to generate parmetric velocity curves? ", AS
IF UCASES(A$) - "Y" THEN

ERASE VT, VR, X

X(0) - 0#: X(2) - 1838#: X(3) - -SQR(MUM / X(2)): X(4) - 0#

SPIRAL X(), DIRECTION, 120000, VT(), VR()
ELSE

VR(0) - 2.083801929462969#

VR(1) --.328978346551485#

VR(2) - 2.759195072751214D-02

VR(3) --1.13520698564688D-03

VR(4) - 2.454296131544368D-05

VR(5) - -2.850460877535156D-07

VR(6) - 1.681222735220663D-09

VR(7) - -3.948910484014757D-12

VT(1) - 2.2187#

VT(2) --.5012#

VTN- 3

END IF

PRINT "Input the radius from the Earth's center "

INPUT rl: PRINT "Input angle (deg) from -x axis "

INPUT theta: INPUT "Do you wish to specify the velocity? (y or n) ", B$
IF UCASE$ (B$) - "Y" THEN

INPUT "Input absolute velocity ", vexp
ELSE

vexp - SQR(MUE / rl)
END IF

thet - theta * PI / 180#

X(1) = rl " COS(thet) - DE

X(2) - rl " SIN(thet)

X (3) - -vexp * SIN(thet)

X(4) = vexp * COS(thet)

INPUT "Mod/fy Control Jacobians and Range# ", C$
IF UCASE$ (C$) - "Y" THEN

PRINT "Default Values 4.93, 4.10, 2.70"

PRINT "Jacl - ", RJAC(1): INPUT RJAC(1)

PRINT "Jac2 - ", RJAC(2): INPUT RJAC(2)

PRINT "Jac3 - ", RJAC (3) : INPUT RJAC (3)

PRINT "Range - ", RANGE: INPUT RANGE
ELSE

END IF

END IF

CLS 1

RJAC(1) - 4.93#: RJAC(2) - 4.1#: RJAC(3) - 2.7#

SCREEN 2: WINDOW (-250000, -275000)-(500000, 325000)
CIRCLE (-DE, 0), 6378

PAINT (-DE, 0), 9, 15

CIRCLE (DM, 0), 1734

PAINT (DM, 0), 8, 15

DBOX 1, 1, 4, 80

DBOX 1, 1, 25, 80

LOCATE I, 28: PRINT titles

LOCATE 2, 2: PRINT "Init. Mass - "; : PRINT USING "######.##"; SCMASS; : PRINT "
kg"

LOCATE 2, 27: PRINT "Prop. Mass - ";
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LOCATE 3, 53: PRINT "Dist. Moon- "; : LOCATE 2, 53: PRINT "Dis_. Eaz_h - "-
LOCATE 3, 2: PRINT "Time elapsed- ";
LOCATE 3, 30: PRINT .'Vel -. ";

LOCATE 5, 2: PRINT "_acobian - ";

LOCATE 25, 21: PRINT "P - Pause G - Go R - Restart Q-quit';
END SUB
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FORTRAN CODE
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431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

SUBROUTINEIO (SCMASS,Isp,Mdot,VRN,THRUST,X,

* gravity,TITLED,RANGE,DIRECT,MUE,VR,rl,theta,RJAC, PI,
* VT,VRR,MU,ACCEL1,MUM,NUM,DM,DE,dt,STPALT,Tr ,VTN,VR0)

IMPLICIT REAL* 16 (A-Z)
CHARACTER*24 TITLED

character*4 AD

CHARACTER*I BD, CD

INTEGER VTN, DIRECT,NUM,VRN, AU,I

DIMENSION X(4),VR(10),VT(5),RJAC(3)
AU=5

WRITE (AU,71)

WRITE (AU,72)
AU= 1

WRITE (AU,71 )

WRITE (AU,72)

71 FORMAT (' ITrajectory Generation Model for Low-Thrust OTV' 's',/,
* ' in Cislunar Space using a Thrusting Control' J,

*' Algorithm in the Restricted three-body')
72 FORMAT (' formulation of the Earth-Moon system. ',/,

*' Eagle Engineering, Inc. (LSPI - djk)')
AU= 5

PRINT * ' '
P

PRINT *, 'OUTPUT WILL GO TO FILE "CISLUNAR.OUT"'

WRITE(AU,7) SCMASS

7 FORMAT('0Spacecraft initial mass =',F10.2 )

WRITE(AU, I 7) Isp

17 FORMAT( ' Specific Impulse of engine = ', F8.2)
WRITE(AU,27) Mdot

27 FORMAT (' Mass flow rate of engines = ',E15.8)

WR1TE(AU,37)

37 FORMAT ('0Do you wish to specify s/c characteristics? (y or n)')
READ *, BD

IF (BD.EQ.'y'.OR.BD.EQ.'Y') THEN

PRINT *, ' Input Spacecraft initial mass.'
READ * SCMASS

PRINT *, ' Input Specific Impulse of engine.'

READ *, Isp

PRINT *, ' Input Mass flow rate of engines.'
READ *, Mdot

PRINT *, ' Input Degree of polynomial curve fit (2-7)'
READ * VRN

ENDIF

47

THRUST = gravity * Isp * Mdot
WRITE(AU,47)

FORMAT ('0Starting Orbit About the Earth or Moon?' )

READ *, AD

PRINT *, 'Input Destination Altitude at which to stop processing.'
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478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

READ *, STPALT
PRINT * ' '
PRINT * ' '
PRINT *,' PLEASEWAIT, GENERATING PARAMETRICVELOCITY EQN.'
IF (AD.EQ.'m'.OR.AD.EQ.'M'.OR.AD.EQ.'moon') AD='MOON'

IF (AD.EQ. 'MOON') THEN
DIRECT = 1

RANGE = 110000.

TITLED= 'Moon to Earth Trajectory'

CALL ERASE (VR, VT, VR0)
X(1) = 0.0

X(2) = 7178.

X(3)=-QSQRT(MUE/X(2))
X(4)= 0.0

RANGESC = 225000.0

CALL SPIRAL (X,DIRECT,RANGESC ,VT,VR,MUE,MUM,SCMASS,

+ dt,THRUST,T'I',Mdot,MU,ACCEL 1,NUM,DM,DE,VRN,VTN,VR0)

PRINT *, 'Input the radius from the Moon' 's Center'
READ *,fl

PRINT *, 'Input angle (deg) from -x axis'
READ * theta

PRINT *, 'Do you wish to specify the velocity? (y or n)'
READ *, BD

IF (BD.EQ.'y'.OR.BD.EQ.'Y') THEN
WRITE(AU,57)

57 FORMAT ('0Input absolute velocity ' )
READ *,VEXP

ELSE

vexp = -QSQRT(MUM]rl)
ENDIF

thet = theta * PI / 180.

X(1) = rl * QCOS(thet) + DM

X(2) = rl * QSIN(thet)

X(3) = -vexp * QSIN(thet)

X(4) = vexp * QCOS(thet)

PRINT *, 'Modify Control Jacobians and Range?'
READ *, CD

IF (CD.EQ.'Y'.OR.CD.EQ.'y') THEN
WRITE(AU,67)

67 FORMAT ('0Default Values 3.05, 2.82, 2.50')
PRINT *,' JAC(I) ='

READ *, RJAC(1)

PRINT *,' Jac2 = '

READ *, RJAC(2)

PRINT *,' Jac3 = '

READ *, R.IAC(3)

PRINT *,' Range = '
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525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

77

87

READ *, RANGE
ELSE

RJAC(1)=3.05

RJAC(2) = 2.82

RJAC(3) = 2.5
ENDIF

ELSE

DIRECT = 0

RANGE = 255000.0

TITLED = 'Earth to Moon Trajectory'

CALL ERASE (VR,VT,VR0)

x(1) = o.o
X(2) = 1838.

X(3) = -QSQRT(MUM / X(2))

x(4) = o.
RANGESC = 120000.0

CALL SPIRAL (X, DIRECT, RANGESC, VT, VR, MUE, MUM,

+ SCMASS, dt, THRUST, Tr, Mdot,

+ MU,ACCEL1,NUM, DM, DE,VRN ,VTN,VR0)

PRINT *, 'Input the radius from the Earth' 's center '

READ *, rl

PRINT *, 'Input angle (deg) from -x axis '
READ *, theta

PRINT *, 'Do you wish to specify the velocity? (y or n) '

READ *, BD

IF (BD.EQ.'Y'.OR.BD.EQ.'y') THEN

WRITE(AU,77)

FORMAT ('0Input absolute velocity ' )

READ *, vexp
ELSE

vexp = QSQRT(MUE / rl)
ENDIF

thet = theta * PI / 180.

X(1) = rl * QCOS(thet) -DE

X(2) = rl * QSIN(thet)

X(3) = -vexp * QSIN(thet)
X(4) = vexp * QCOS(thet)

PRINT *, 'Modify Control Jacobians and Range? '

READ *, CD

IF (CD.EQ.'Y'.OR.CD.EQ.'y') THEN

WRITE(AU,87)

FORMAT ('0Default Values 4.93, 4.10, 2.70' )

PRINT * ' Jacl = '
I

READ *, RJAC(1)
PRINT * ' Jac2 = '

READ *, RJAC(2)
PRINT * ' Jac3 = '

9
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572

573

574

575

576

577

578

579

580

581

582

READ *, RJAC(3)

PRINT *, ' Range = '
READ *, RANGE

ELSE

RJAC(1) = 4.93

RJAC(2) = 4.1

RJAC(3) = 2.7
ENDIF

ENDIF

RETURN

END
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JACOBI Subroutine Description

The JACOBI subroutine calculates the instantaneous Jacobian constant of the spacecraft during

its flight. This constant is then compared to a series of user def'med control values to determine

the necessary guidance control action.
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JACOBI Internal and Shared Variables

CALL JACOBI (xo, C J) STATIC

CJ

EN

RMT

ROEN

ROMN

RR

VELN

W

X0

XN

YN

The instantaneous Jacobian constant of the spacecraft.

The non-dimensionalized energy of the spacecraft in the three-body system.

Radial distance of the spacecraft from the center of the Moon (km).

The non-dimensionalized distance the spacecraft is away from the Earth.

The non-dimensionalized distance the spacecraft is away from the Moon.

Radial distance of the spacecraft from the center of the Earth (km).

The non-dimensionalized velocity of the spacecraft.

Magnitude of the spacecraft's velocity (km/s).

State Vector of the spacecraft's position and velocity in the rotating x,y coordinates
(km and km/s).

The non-dimensionalized x-component of the spacecraft's position.

The non-dimensionalized y-component of the spacecraft's position.
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BASIC CODE
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DEFDBL A-H, J-Z
SUB JACOBI (X () , CJ) STATIC

SEARED W, RMT, RR
ROEN - RR / EMDIST

ROMN- RMT / EMDIST
XN - X(1) / EMDIST

YN - X(2) / EMDIST

EN - XN A 2 + YN ^ 2 + 2# * (I# - MUN) / ROEN + 2# * MUN / ROMN
VELN -VV / (NW * EMDIST)

CJ - EN - VELN * VELN + MUN * (I# - MUN)
END SUB
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FORTRAN CODE
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584
585
586
587
588
589
590
591
592
593
594
595

SUBROUTINEJACOBI (X,CJ,RR, EMDIST, RMT, MUN, W, NW)
IMPLICIT REAL* 16(A-Z)
DIMENSION X(4), VR(10),RJAC(3), VT(5)
ROEN= RR ] EMDIST

ROMN = RMT / EMDIST

XN = X(1) / EMDIST

YN = X(2) [ EMDIST

EN = XN ** 2 + YN ** 2 + 2. * (1. - MUN)/ROEN +2.* MUN / ROMN

VELN = VV / (NW * EMDIST)

CJ = EN - VELN * VELN + MUN * (1. - MUN)
RETURN

END
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POLYFIT SUBROUTINE DESCRIPTION

The POLYFIT subroutine is a stand along polynomial curve fitting routine that was taken from a

Public Domain library of programs. It can fit up to seventh-order polynomial curves to the input

data.

POLYFIT SUBROUTINE PASSED VARIABLES

CALL POLYFIT (PRO, PRV0, VRN, J, VR0)

SUB POLYFIT (PRO, PV0, DEGREE, N, VR0)

DEGREE The degree of the polynomial curve for the data.

N

PRO

Pvo

VRO

The number of data points.

The array of the sampled radial positions.

The array of the radial velocity component at each sampled position.

The output array of the coefficients for the polynomial curve.
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DEFDBL A-H, J-Z

SUB POLYFIT (PR(), PV(), DEGREE, N, VR() )

REDIM A(21), R(13, 14), t(14)

D - DEGREE: A(1) - N
FOR I - 1 TO N

X - PR(I) : Y - PV(I)
FOR J - 2 TO 2 * D + 1

A(J) - A(J) + X ^ (J - I)
NEXT J

FOR K - I TO D + 1

R(K, D + 2) - t(K) + Y * X ^ (K - 1)

t(K) - t(K) + Y * X ^ (K - 1)
NEXT K

t(D + 2) - t(D + 2) + Y ^ 2

NEXT I

FOR J " 1 TO D + 1

FOR K - 1 TO D + 1

R(J, K) - A(J + K - I)

NEXT K

NEXT J

FOR J - 1 TO D + 1

K- J

280 IF R(K, J) <> 0 THEN 320

K- K + 1

IF K <- D + 1 THEN 280

PRINT "NO UNIQUE" SOLUTION"

GOTO 790

320 FOR I - i TO D + 2

S -R(J, I)

R(J, I) -R(K, I)

R(K, I) - S
NEXT I

Z - 1 / R(J, J)

FOR I - 1 TO D + 2

R(J, I) - Z * R(J, I)

NEXT I

FOR K - i TO D + 1

IF K - J THEN 470

z - -R(K, J)
FOR I - 1 TO D + 2

R(K, I) - R(K, I) + Z * R(J, I)
NEXT I

470 NEXT K

NEXT J

PRINT

PRINT "

ONSTA

FOR J - 1 TO D

CONSTANT -"; R(1, D + 2): CONSTA - R(I, D + 2): VR(0) - ,

PRINT J; "DEGREE COEFFICIENT -"; R(J + i, D + 2): VR(J) - R(J + i, D + 2)
NEXT J

PRINT

P-0

FOR J - 2 TO D + 1

P - P + R(J, D + 2) * (t(J) - A(J) * t(1) / N)
NEXT J

q- t (D + 2) - t(1) ^ 2 / N

Z- q- P

I-N- D - 1

PRINT

J- P / q

PRINT "COEFFICIENT OF DETERMINATION (R^2) - "; J

PRINT "COEFFICIENT OF CORRLELATION -" ; SQR (ABS (J))

PRINT "STANDARD ERROR OF ESTIMATE -"; SQR(ABS(Z / I) )
790 PRINT "POLYFIT COMPLETED"

END SUB
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597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

SUBROUTINE POLYFIT (PR,PV, DEGREE,N, VR,VR0)
IMPLICIT REAL* 16(A-H,O-Z)
IMPLICIT INTEGER(I-N)
INTEGER D, DEGREE,AU
DIMENSION A(21),R(13,14),t(14),VR(10),PR(2100),PV(2100)
D = DEGREE
AU= 5
A(1) = QFLOAT( N )
DO 10I= 1 ,N
X = PR(I)
Y = PV(I)
DO20 J=2,2*D+l
A(J) = A(J) + X ** (J- 1)

20 CONTINUE
DO 30K =I,D+I
R(K, D + 2) = t(K) + Y * X ** (K - 1)
t(K) = t(K) + Y * X ** (K - 1)

30 CONTINUE

t(D +2)=t(D + 2) + Y ** 2.
10 CONTINUE

DO40J= 1, D+ 1

DO 50 K= 1, D+ 1

R(J, K) = A(J + K -1)
50 CONTINUE

40 CONTINUE

DO 100J= 1, D+ 1
K=J

280 IF (R(K, J).NE. 0.0) GOTO 320
K=K+I

IF (K.LE. D + 1 ) GOTO 280

WRITE(AU,7)

7 FORMAT (' NO UNIQUE SOLUTION')
GOTO 790

320 DO 60I=1, D+2

S = R(J, I)

R(J, I) = R(K, I)

R(K, I) = S
60 CONTINUE

Z = 1.0 / R(J, J)

DO70I= 1 ,D+2

R(J,I) = Z * R(J, I)
70 CONTINUE

DO 470 K = 1, D+ 1

IF (K.EQ.J) GOTO 470

Z = -R(K,J)
DO90 I=l,D+2

R(K, I) = R(K, I) + Z * R(J, I)
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644

645

646

647

648

649
650

651

652

653

654

655

656

657
658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

90 CONTINUE

470 CONTINUE

100 CONTINUE

AU= 1

WRITE(AU,17) R(1, D+2)
17 FORMAT('0 CONSTANT

CONSTA = R(1, D + 2)
VR0 = CONSTA

DO ll0J= 1, D

WRITE(AU,27) J, R(J+I,D+2)

47

57

790

=',E15.8)

27 FORMAT(1X,I4, 'DEGREE COEFFICIENT =',E15.8)

VR(J) = R(J + 1, D + 2)
110 CONTINUE

P=0

DO 120 J - 2 ,D + 1

P = P + R(J, D + 2) * (t(J) - A(J) * t(1) [ QFLOAT( N ) )
120 CONTINUE

q = t(D + 2) - t(1) ** 2. / QFLOAT( N )
Z=q-P
I=N-D-1

PJ=P/q

WRITE(AU,37) PJ

37 FORMAT (' COEFFICIENT OF DETERMINATION (R^2)=',E15.8)
SQAJ = QSQRT( QABS( PJ ) )

SQAZI = QSQRT(QABS(Z/QFLOAT(I)))

WRITE(AU,47) SQAJ

FORMAT (' COEFFICIENT OF CORRELATION =',E15.8)
WRITE(AU,57) SQAZI

FORMAT (' STANDARD ERROR OF ESTIMATE =',E15.8)
PRINT *,'POLYFIT COMPLETED'

RETURN

END
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RUK and RUK4 Subroutine Descriptions

The RUK and RUK4 subroutine are fourth order Runge-Kutta integration routines. They call D

ER1 and DER, respectively, and integrate the equations of motion of the spacecraft.

RUK and RUK4 Subroutine Passed Variables

SUB RUK (X0, N, dt) STATIC

SUB RUK4 (X0, N, dt) STATIC

dt

NUM

x0

Integration step size (seconds).

Order of the X state vector for the Runge-Kutta.

State Vector of the spacecraft's position and velocity (km and kin/s).
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BASIC CODE
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DEFDBL A-H, J-M, O-Z
SUB RUK4 (X(), N, dr) STATIC

DIM D(6|, F(6), U(6), DX(6)
CALL DER(X(), D())
FOR I - 1 TO N

D(I) - D(I) " dr: U(I) - X(1) + .5# " D(I)
NEXT I

CALL DER(U(), F())
FOR I - 1 TO N

F(I) - F(I) • dt: D(1) - D(I) + 2# " F(I): U(I) - X(I) + .5# " F(I)
NEXT I

CALL DER(U(), F())
FOR I - 1 TO N

F(I) - F(I) * dr: D(I) - D(1) + 2# * F(I): U(I) - X(1) + F(I)

NEXT I

DER (U (), F())
FOR I - 1 TO N

X(I) - X(1) + (D(1) + F(I) * dr) / 6#
NEXT I

END SUB
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FORTRAN CODE
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706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

SUBROUTINERUK4 (X, N, dt,MU, ACCEL1,DM,DE,MUM,
* MUE,TH,VR,thrst,CJ,ACCEL,RANGE,DIRECT,ALPHA,
* RANGEOFF,theta,RJAC,VTN,DIST,VRR,VRN,VR0,TT,VT)

IMPLICIT REAL* 16(A-Z)
INTEGERI,N,TH,thrst,VTN,VRN
DIMENSION D(4),F(4),U(4),X(4),VR(I0),VT(5),RJAC(3)
CALL DER(X, D,DM,DE,MUM,MUE,TH,VR,thrst,CJ,ACCEL,RANGE,

* DIRECT,ALPHA,RANGEOFF,theta,RJAC,VTN,VT,DIST,VRR,VRN,VR0,TF)
DO 10I= 1 ,N
D(I) = D(I) * dt
U(I) = X(I) + .5 * D( I )

10 CONTINUE

CALL DER(U, F,DM,DE,MUM,MUE,TH,VR,thrst,CJ,ACCEL,RANGE,

* DIRECT,ALPHA,RANGEOFF,theta,RJAC,VTN,VT,DIST,VRR,VRN,VR0,T'I')
DO 20I= 1, N

F(I) = F(I) * dt

D(I) = D(I) + 2. * F(I)

O(I) = X(I) + .5 * F(I)
20 CONTINUE

CALL DER(U, F,DM,DE,MUM,MUE,TH,VR,thrst,CJ,ACCEL,RANGE,

* DIRECT,ALPHA,RANGEOFF,theta,RJAC,VTN,VT,DIST,VRR,VRN,VR0,TT)
DO 30I= 1 ,N

F(I) = F(I) * dt

D(I) = D(I) + 2. * F(I)

u(I) = x(i) + F(I)
30 CONTINUE

CALL DER(U, F,DM,DE,MUM,MUE,TH,VR,thrst,CJ,ACCEL,RANGE,

* DIRECT,ALPHA,RANGEOFF,theta,RJAC,VT ,VT,DIST,VRR,VRN,VR0,Tr)
DO 40 1 = 1,N

xft) =x(I) + (D(I) + F(I) *dt)/6.
40 CONTINUE

RETURN
END
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SPIRAL Subroutine Description

The subroutine SPIRAL is used to generate the parametric curves of the radial and tangential

velocity components for the reference capture spiral. The direction of the cislunar trajectory

determines the goveming gravitational parameter, MU, for the spiral trajectory generation. The

estimated final mass about the target planet is taken to be 80% of the spacecraft's chosen initial

mass. The subroutine begins an integration loop using a negative mass flow for the spacecraft's

propulsion system. A spiral trajectory is generated out from the target planet of the spacecraft

gaining mass as it goes. This mimics the ideal spiral capture with the spacecraft losing mass as it

settles into the capture orbit. The integration routine is a fourth order Runge-Kutta that calls the

derivative subroutine, DER1. DER1 contains the equations of motion for a two-body trajectory.

No perturbational forces, other than the spacecraft's acceleration, are included in the two-

dimensional equations of the motion. SPIRAL calculates the acceleration level, the two-body

energy, and the tangential and radial velocity components. These velocity components are

determined by f'mding the angle, theta, between the radial vector and the velocity vector using

the dot products rule,

r x v = Irl Ivl cos(theta)

where r is the radius, and v is the velocity. The radial component of the velocity is found by

multiplying the cosine of theta by VMAG, the magnitude of the velocity vector. The tangential

component of the velocity vector is similarly found by multiplying VMAG by the sin of theta.

Every tenth integration the velocity components and radial distance is captured into three arrays,

PVR0, PVT0, and PRO. When the two-body energy of the spiral trajectory is non-negative the

109



spacecraft's thrust is turned off and the spacecraft is assumed to be following a parabolic path.

The integration continues until the spacecraft passes the range flag, RANGESC. POLYF1T

develops a polynomial curve fit of the radial velocity component. The tangential velocity

component is fit to either a power, exponemial, logarithmic, or linear curve in the subroutine

CURVE depending on which equation best fits the data. When the parametric curve fitting is

complete the program records the velocity curve coefficients into VRO and VTO and returns

control to IO.
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SPIRAL Subroutine Intemal and Shared Variables

SUB SPIRAL (X0, DIRECTION, RANGESC, VT0, VR0

ctheta Cosine of the angle between the radius and velocity vector.

DIRECTION Numeric indicator of the direction of the trajectory generation, Earth to Moon (0)
or Moon to Earth (1).

Integration step size (seconds).

Two-body energy, sum of the potential and kinetic energy.

The array size counter for the radial and tangential velocity, and the radial
distance arrays.

The array containing the radial distance from the capture planet (krn/1000).

The array containing the radial component of velocity, vrad, during the reverse
integration spiral (kin/s).

The array containing the tangential component of velocity, vtan, during the
reverse integration spiral (km/s).

Range from the central body for the reverse integration spiral to be generated
before stopping (km).

Radial vector dot multiplied with the velocity vector.

Magnitude of the spacecraft's radius vector from the capture planet (km).

Starting mass for reverse integration of spacecraft from target planet, 80% of
chosen initial mass.

Total time of trajectory generation (seconds).

Magnitude of the spacecraft's velocity vector (kin/s).

Square of the velocity magnitude of the spacecraft in relation to the capture planet
(km/s)A2.

The array of the parameterized radial velocity coefficients.

Component of the spacecraft's velocity in the radial direction (km/s).

The array of parameterized tangential velocity coefficients.
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dt

e

J

PRO

PVRO

PvTo

RANGESC

RDOTV

RMAG

SCMASS 1

TF

VMAG

VMAG2

VR0

vrad

VT0



vtan

vthet

W

xo

Component of the spacecraft's velocity in the tangential direction (km/s).

Angle between the radius and velocity vector (radians).

Counter for sampling the capture spiral trajectory.

State Vector of the spacecraft's position and velocity in the rotating x,y coordi-

nates (kin and kin/s).
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" SPIRAL Subroutine Flowchart

SPIRAL

Earth _ Moon

Call RUK ]

,,o..¢

No

Call POLYFIT 1

Calculate Velocity
components

Fill Velocity
Arrays

Call CURVE

I
RETURN
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BASIC CODE
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DEFDBL A- Z

SUB SPIRAL (X(), DIRECTION, RANGESC, VT(), VR())

REDIM PR(2100), PVR(2100), PVT(2100)

IF DIRECTION- 1 THEN

MU - MITE

ELSE

MU - MUM

END IF

I - 0: w - 5: J - 0: dt - 3

SCMASSI - SCMASS " .8# 'total s/c mass (kg)
SCREEN 2: WINDOW (70000, 50000)-(-70000, -50000)

CIRCLE (0, 0), X(2), .I
DO

RUK X(), NUM, dt

RMAG - SQR(X(1) ^ 2 + X(2) ^ 2)
dt - .02# * RMAG

TT - TT + dr: I - I + 1

VMAG2 - X(3) ^ 2 + X(4) ^ 2

e - VMAG2 / 2# - MU / RMAG

ACCEL1 - THRUST / (SCMASS1 + Mdot * TT) 'acceleration of the s/c (km/s^2)
IF (e >- 0#) THEN 'ACCEL1 - 0#

IF w - 10 THEN

VMAG - SQR (VMAG2)

RDOTV - X(1) " X(3) + X(2) * X(4)

ctheta - RDOTV / (RMAG * VMAG)

vthet - ACOS (ctheta)

vrad- VMAG * COS(vthet)

vtan - VMAG * SIN (vthet)

J - J + I: SHOW X()

PR(J) - RMAG / I000#: PVR(J) - vrad: PVT(J) - vtan: w - 0
END IF

w R w + !

LOOP WHILE RMAG < RANGESC

PRINT " done", RMAG, vrad, v_an, I, J, e

POLYFIT PR(), PVR(), VRN, J, VR()

PRINT "The coefficients of vrad vs rad polynomial"

CURVE PR(), PVT(), J, VT()
END SUB

115



FORTRAN CODE
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740

-741

742

743

744

745

746

-747

748

749

--750

751

752

_753

754

755

_756

757

758

759
760

761
762

763
764

/65

766

767

r68

769

770

Z71

"772

773

774

-'775

776

?77

--778

779

780

--181

782

T83

--/84

785

186

SUBROUTINE SPIRAL (X, DIRECT, RANGESC, VT, VR, MUE,

+ MUM, SCMASS, dt, THRUST, TT, Mdot,

+ MU, ACCELI,NUM,DM,DE,VRN,VTN,VR0)

IMPLICIT REAL* 16 (A-H,O-Z)

REAL* 16 MU,MUM,MUE,Mdot

INTEGER W,VRN,DIRECT,AU,VTN

DIMENSION X(4), PR(2100), PVR(2100), PVT(2100), VR(10),VT(5)

DIMENSION ABCD(100)
AU= 5

IF (DIRECT.EQ.1) THEN
MU = MUE

ELSE

MU = MUM

ENDIF

w=5

J=0

dt = 3.0

SCMASS1 = SCMASS * .8

DO WHILE ( RMAG .LT. RANGESC )

CALL RUK (X,NUM, dt,MU,ACCEL1)

RMAG = QSQRT(X(1) ** 2. + X(2) ** 2.)
dt = .02 * RMAG

TT=TT+ dt

VMAG2 = X(3) ** 2. + X(4) ** 2.

e = VMAG2 / 2. - MU / RMAG

ACCEL1 = THRUST/(SCMASS1 + Mdot * "l'r)
IF (e.GE.0.0) ACCEL1 =0.0

IF (w.EQ. 10) THEN

VMAG = QSQRT(VMAG2)

RDOTV = X(1) * X(3) + X(2) * X(4)

ctheta = RDOTV / (RMAG * VMAG)

vthet = QACOS(ctheta)

vrad = VMAG * QCOS(vthet)

vtan = VMAG * QSIN(vthet)
J=J+ 1

PR(J)=RMAG/1000.0

PVR(J) = vrad

PVT(J) = vtan
w=0

ENDIF

w= w+ 1

END DO

CALL POLYFIT (PR,PVR,VRN,J,VR,VR0)
AU= 1

WRITE(AU,107)

107 FORMAT (' 1The coefficients of vrad vs rad polynomial' )

CALL CURVE(PR,PVT,J,VT,VR0,VTN)
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788

RETURN

END
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